Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Active ciliated surfaces expel model swimmers

Langmuir 29:41 (2013) 12770-12776

Authors:

H Shum, A Tripathi, JM Yeomans, AC Balazs

Abstract:

Continually moving cilia on the surface of marine organisms provide a natural defense against biofouling. To probe the physical mechanisms underlying this antifouling behavior, we integrate the lattice Boltzmann and immersed boundary methods and undertake the first computational studies of the interactions between actuated, biomimetic cilia and a model swimmer. We find that swimmers are effectively "knocked away" from the ciliated surface through a combination of steric repulsion and locally fluctuating flows. In addition, the net flow generated by the collective motion of the entire ciliary array was important for significantly reducing the times spent by relatively slow swimmers near the surface. The results reveal that active ciliated layers can offer a means to resist a wide range of species with a single surface. © 2013 American Chemical Society.
More details from the publisher
More details
More details

Enhanced motility of a microswimmer in rigid and elastic confinement

Physical Review Letters 111:13 (2013)

Authors:

R Ledesma-Aguilar, JM Yeomans

Abstract:

We analyze the effect of confining rigid and elastic boundaries on the motility of a model dipolar microswimmer. Flexible boundaries are deformed by the velocity field of the swimmer in such a way that the motility of both extensile and contractile swimmers is enhanced. The magnitude of the increase in swimming velocity is controlled by the ratio of the swimmer-advection and elastic time scales, and the dipole moment of the swimmer. We explain our results by considering swimming between inclined rigid boundaries. © 2013 American Physical Society.
More details from the publisher
More details
More details

Viscous fingering at ultralow interfacial tension

(2013)

Authors:

Siti Aminah Setu, Ioannis Zacharoudiou, Gareth J Davies, Denis Bartolo, Sebastien Moulinet, Ard A Louis, Julia M Yeomans, Dirk GAL Aarts
More details from the publisher

Modelling unidirectional liquid spreading on slanted microposts

Soft Matter 9:29 (2013) 6862-6866

Authors:

A Cavalli, ML Blow, JM Yeomans

Abstract:

A lattice Boltzmann algorithm is used to simulate the slow spreading of drops on a surface patterned with slanted micro-posts. Gibb's pinning of the interface on the sides or top of the posts leads to unidirectional spreading over a wide range of contact angles and inclination angles of the posts. Regimes for spreading in no, one or two directions are identified, and shown to agree well with a two-dimensional theory proposed in Chu, Xiao and Wang. A more detailed numerical analysis of the contact line shapes allows us to understand deviations from the two dimensional model, and to identify the shapes of the pinned interfaces. © 2013 The Royal Society of Chemistry.
More details from the publisher
More details

Fluid mixing by curved trajectories of microswimmers

(2013)

Authors:

Dmitri O Pushkin, Julia M Yeomans
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Current page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet