Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Fluid transport by individual microswimmers

Journal of Fluid Mechanics 726 (2013) 5-25

Authors:

DO Pushkin, H Shum, JM Yeomans

Abstract:

We discuss the path of a tracer particle as a microswimmer moves past on an infinite, straight trajectory. If the tracer is sufficiently far from the path of the swimmer it moves in a closed loop. As the initial distance between the tracer and the path of the swimmer ρ decreases, the tracer is displaced a small distance backwards (relative to the direction of the swimmer velocity). For much smaller tracer-swimmer separations, however, the tracer displacement becomes positive and diverges as ρ → 0. To quantify this behaviour we calculate the Darwin drift, the total volume swept out by a material sheet of tracers, initially perpendicular to the swimmer path, during the swimmer motion. We find that the drift can be written as the sum of a universal term which depends on the quadrupolar flow field of the swimmer, together with a non-universal contribution given by the sum of the volumes of the swimmer and its wake. The formula is compared to exact results for the squirmer model and to numerical calculations for a more realistic model swimmer. © 2013 Cambridge University Press.
More details from the publisher
More details

Confined active nematic flow in cylindrical capillaries

(2012)

Authors:

Miha Ravnik, Julia M Yeomans
More details from the publisher

Anisotropic wetting and de-wetting of drops on substrates patterned with polygonal posts

(2012)

Authors:

Robert J Vrancken, Matthew L Blow, Halim Kusumaatmaja, Ko Hermans, An M Prenen, Cees WM Bastiaansen, Dirk J Broer, Julia M Yeomans
More details from the publisher

Fluid transport by individual microswimmers

(2012)

Authors:

Dmitri O Pushkin, Henry Shum, Julia M Yeomans
More details from the publisher

Confinement induced splay-to-bend transition of colloidal rods.

Phys Rev Lett 109:10 (2012) 108303

Authors:

Oliver J Dammone, Ioannis Zacharoudiou, Roel PA Dullens, Julia M Yeomans, MP Lettinga, Dirk GAL Aarts

Abstract:

We study the nematic phase of rodlike f d-virus particles confined to channels with wedge-structured walls. Using laser scanning confocal microscopy we observe a splay-to-bend transition at the single particle level as a function of the wedge opening angle. Lattice Boltzmann simulations reveal the underlying origin of the transition and its dependence on nematic elasticity and wedge geometry. Our combined work provides a simple method to estimate the splay-to-bend elasticity ratios of the virus and offers a way to control the position of defects through the confining boundary conditions.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Current page 41
  • Page 42
  • Page 43
  • Page 44
  • Page 45
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet