From generation to collection – impact of deposition temperature on charge carrier dynamics of high-performance vacuum-processed organic solar cells
Energy & Environmental Science Royal Society of Chemistry (RSC) (2024)
Abstract:
<jats:p>Substrate heating during co-evaporation of bulk heterojunction organic solar cells aids phase separation and improves performance. While recombination remains unaffected, hole transport improves due to more crystalline donor domains.</jats:p>Roadmap on established and emerging photovoltaics for sustainable energy conversion
Journal of Physics Energy IOP Publishing (2024)
Abstract:
<jats:title>Abstract</jats:title> <jats:p>Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO<jats:sub>2</jats:sub>eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TW<jats:sub>p</jats:sub> in 2021 to 8.5 TW<jats:sub>p</jats:sub> by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.</jats:p>Machine learning discovery of cost-efficient dry cooler designs for concentrated solar power plants
Scientific Reports Nature Research 14:1 (2024) 19086
Abstract:
Concentrated solar power (CSP) is one of the few sustainable energy technologies that offers day-to-night energy storage. Recent development of the supercritical carbon dioxide (sCO2) Brayton cycle has made CSP a potentially cost-competitive energy source. However, as CSP plants are most efficient in desert regions, where there is high solar irradiance and low land cost, careful design of a dry cooling system is crucial to make CSP practical. In this work, we present a machine learning system to optimize the factory design and configuration of a dry cooling system for an sCO2 Brayton cycle CSP plant. For this, we develop a physics-based simulation of the cooling properties of an air-cooled heat exchanger. The simulator is able to construct a dry cooling system satisfying a wide variety of power cycle requirements (e.g., 10–100 MW) for any surface air temperature. Using this simulator, we leverage recent results in high-dimensional Bayesian optimization to optimize dry cooler designs that minimize lifetime cost for a given location, reducing this cost by 67% compared to recently proposed designs. Our simulation and optimization framework can increase the development pace of economically-viable sustainable energy generation systems.Improved reverse bias stability in p–i–n perovskite solar cells with optimized hole transport materials and less reactive electrodes
Nature Energy Nature Research 9:10 (2024) 1275-1284
Abstract:
As perovskite photovoltaics stride towards commercialization, reverse bias degradation in shaded cells that must current match illuminated cells is a serious challenge. Previous research has emphasized the role of iodide and silver oxidation, and the role of hole tunnelling from the electron-transport layer into the perovskite to enable the flow of current under reverse bias in causing degradation. Here we show that device architecture engineering has a significant impact on the reverse bias behaviour of perovskite solar cells. By implementing both a ~35-nm-thick conjugated polymer hole transport layer and a more electrochemically stable back electrode, we demonstrate average breakdown voltages exceeding −15 V, comparable to those of silicon cells. Our strategy for increasing the breakdown voltage reduces the number of bypass diodes needed to protect a solar module that is partially shaded, which has been proven to be an effective strategy for silicon solar panels.Strategies to Control Crystal Growth of Highly Ordered Rubrene Thin Films for Application in Organic Photodetectors
Advanced Optical Materials Wiley (2024)