Machine learning discovery of cost-efficient dry cooler designs for concentrated solar power plants
Scientific Reports Nature Research 14:1 (2024) 19086
Abstract:
Concentrated solar power (CSP) is one of the few sustainable energy technologies that offers day-to-night energy storage. Recent development of the supercritical carbon dioxide (sCO2) Brayton cycle has made CSP a potentially cost-competitive energy source. However, as CSP plants are most efficient in desert regions, where there is high solar irradiance and low land cost, careful design of a dry cooling system is crucial to make CSP practical. In this work, we present a machine learning system to optimize the factory design and configuration of a dry cooling system for an sCO2 Brayton cycle CSP plant. For this, we develop a physics-based simulation of the cooling properties of an air-cooled heat exchanger. The simulator is able to construct a dry cooling system satisfying a wide variety of power cycle requirements (e.g., 10–100 MW) for any surface air temperature. Using this simulator, we leverage recent results in high-dimensional Bayesian optimization to optimize dry cooler designs that minimize lifetime cost for a given location, reducing this cost by 67% compared to recently proposed designs. Our simulation and optimization framework can increase the development pace of economically-viable sustainable energy generation systems.Improved reverse bias stability in p–i–n perovskite solar cells with optimized hole transport materials and less reactive electrodes
Nature Energy Nature Research 9:10 (2024) 1275-1284
Abstract:
As perovskite photovoltaics stride towards commercialization, reverse bias degradation in shaded cells that must current match illuminated cells is a serious challenge. Previous research has emphasized the role of iodide and silver oxidation, and the role of hole tunnelling from the electron-transport layer into the perovskite to enable the flow of current under reverse bias in causing degradation. Here we show that device architecture engineering has a significant impact on the reverse bias behaviour of perovskite solar cells. By implementing both a ~35-nm-thick conjugated polymer hole transport layer and a more electrochemically stable back electrode, we demonstrate average breakdown voltages exceeding −15 V, comparable to those of silicon cells. Our strategy for increasing the breakdown voltage reduces the number of bypass diodes needed to protect a solar module that is partially shaded, which has been proven to be an effective strategy for silicon solar panels.Strategies to Control Crystal Growth of Highly Ordered Rubrene Thin Films for Application in Organic Photodetectors
Advanced Optical Materials Wiley (2024)
Abstract:
<jats:title>Abstract</jats:title><jats:p>Organic semiconductors still lag behind their inorganic counterparts in terms of mobility due to their lower structural order, in particular in thin films. Here, the highly ordered phase of triclinic rubrene – characterized by high vertical hole mobility – grown from a vacuum‐deposited thin film is used by post‐annealing and implemented into organic photodetectors. Since the triclinic rubrene exhibits a high roughness with a peak‐to‐valley value of 250 nm, which is detrimental to the dark current, strategies to control the crystal growth are developed. These investigations show that a suppression layer of 20 nm C<jats:sub>60</jats:sub> is the most promising approach to successfully reduce the surface roughness while maintaining the triclinic phase, proven by grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). With the smoothened active layer, the dark current density is reduced by three orders of magnitude compared to the neat rubrene layer. It is as low as 2.5 × 10<jats:sup>−10 </jats:sup>A cm<jats:sup>−2</jats:sup> at −0.1 V bias, reflected in an overall specific detectivity of 6 × 10<jats:sup>11</jats:sup> Jones at zero bias (based on noise measurements) and a high linear dynamic range of 170 dB. This strategy using a suppression layer thus proves successful and is very promising to be applied to other crystalline materials.</jats:p>Limiting factors for charge generation in low-offset fullerene-based organic solar cells
Nature Communications Nature Research 15:1 (2024) 5488
Abstract:
Free charge generation after photoexcitation of donor or acceptor molecules in organic solar cells generally proceeds via (1) formation of charge transfer states and (2) their dissociation into charge separated states. Research often either focuses on the first component or the combined effect of both processes. Here, we provide evidence that charge transfer state dissociation rather than formation presents a major bottleneck for free charge generation in fullerene-based blends with low energetic offsets between singlet and charge transfer states. We investigate devices based on dilute donor content blends of (fluorinated) ZnPc:C60 and perform density functional theory calculations, device characterization, transient absorption spectroscopy and time-resolved electron paramagnetic resonance measurements. We draw a comprehensive picture of how energies and transitions between singlet, charge transfer, and charge separated states change upon ZnPc fluorination. We find that a significant reduction in photocurrent can be attributed to increasingly inefficient charge transfer state dissociation. With this, our work highlights potential reasons why low offset fullerene systems do not show the high performance of non-fullerene acceptors.A green solvent system for precursor phase-engineered sequential deposition of stable formamidinium lead triiodide for perovskite solar cells
(2024)