CMS data processing workflows during an extended cosmic ray run

Journal of Instrumentation 5:3 (2010)

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, W Adam, B Arnold, H Bergauer, T Bergauer, M Dragicevic, M Eichberger, J Erö, M Friedl, R Frühwirth, VM Ghete, J Hammer, S Hansel, M Hoch, N Hörmann, J Hrubec, M Jeitler, G Kasieczka, K Kastner, M Krammer, D Liko, I De Magrans Abril, I Mikulec, F Mittermayr, B Neuherz, M Oberegger, M Padrta, M Pernicka, H Rohringer, S Schmid, R Schöfbeck, T Schreiner, R Stark, H Steininger, J Strauss, A Taurok, F Teischinger, T Themel, D Uhl, P Wagner, W Waltenberger, G Walzel, E Widl, CE Wulz, V Chekhovsky, O Dvornikov, I Emeliantchik, A Litomin, V Makarenko, I Marfin, V Mossolov, N Shumeiko, A Solin, R Stefanovitch, J Suarez Gonzalez, A Tikhonov, A Fedorov, A Karneyeu, M Korzhik, V Panov, R Zuyeuski, P Kuchinsky, W Beaumont, L Benucci, M Cardaci, EA De Wolf, E Delmeire, D Druzhkin, M Hashemi, X Janssen, T Maes, L Mucibello, S Ochesanu, R Rougny, M Selvaggi, H Van Haevermaet, P Van Mechelen, N Van Remortel, V Adler, S Beauceron, S Blyweert, J D'Hondt, S De Weirdt, O Devroede, J Heyninck, A Kalogeropoulos, J Maes, M Maes, MU Mozer, S Tavernier, W Van Doninck, P Van Mulders, I Villella, O Bouhali, EC Chabert, O Charaf, B Clerbaux, G De Lentdecker

Abstract:

The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data. © 2010 IOP Publishing Ltd and SISSA.

Calibration of the CMS drift tube chambers and measurement of the drift velocity with cosmic rays

Journal of Instrumentation 5:3 (2010)

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, W Adam, B Arnold, H Bergauer, T Bergauer, M Dragicevic, M Eichberger, J Erö, M Friedl, R Frühwirth, VM Ghete, J Hammer, S Hansel, M Hoch, N Hörmann, J Hrubec, M Jeitler, G Kasieczka, K Kastner, M Krammer, D Liko, I De Magrans Abril, I Mikulec, F Mittermayr, B Neuherz, M Oberegger, M Padrta, M Pernicka, H Rohringer, S Schmid, R Schöfbeck, T Schreiner, R Stark, H Steininger, J Strauss, A Taurok, F Teischinger, T Themel, D Uhl, P Wagner, W Waltenberger, G Walzel, E Widl, CE Wulz, V Chekhovsky, O Dvornikov, I Emeliantchik, A Litomin, V Makarenko, I Marfin, V Mossolov, N Shumeiko, A Solin, R Stefanovitch, J Suarez Gonzalez, A Tikhonov, A Fedorov, A Karneyeu, M Korzhik, V Panov, R Zuyeuski, P Kuchinsky, W Beaumont, L Benucci, M Cardaci, EA De Wolf, E Delmeire, D Druzhkin, M Hashemi, X Janssen, T Maes, L Mucibello, S Ochesanu, R Rougny, M Selvaggi, H Van Haevermaet, P Van Mechelen, N Van Remortel, V Adler, S Beauceron, S Blyweert, J D'Hondt, S De Weirdt, O Devroede, J Heyninck, A Kalogeropoulos, J Maes, M Maes, MU Mozer, S Tavernier, W Van Doninck, P Van Mulders, I Villella, O Bouhali, EC Chabert, O Charaf, B Clerbaux, G De Lentdecker

Abstract:

This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of the cosmic muons relative to the LHC clock cycle. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events. © 2010 IOP Publishing Ltd and SISSA.

Combination of standard model Higgs searches at CDF

Proceedings of Science 120 (2010)

Abstract:

We present the latest combination of searches for a standard model (SM) Higgs boson in pp¯ collisions at √s = 1.96 TeV recorded by the CDF II detector at the Fermilab Tevatron. Using data corresponding to 2.3-5.9 fb−1 of integrated luminosity, we perform searches in a number of different production and decay modes and then combine them to improve sensitivity. No excess in data above that expected from backgrounds is observed; therefore, we set upper limits on the production cross section times branching fraction as a function of the SM Higgs boson mass (mH). The combined observed (expected) limit is 1.9 (1.8) times the SM prediction at mH = 115 GeV/c2 and 1.0 (1.1) times the SM prediction at mH = 165 GeV/c2.

Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons

Journal of Instrumentation 5:3 (2010)

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, W Adam, B Arnold, H Bergauer, T Bergauer, M Dragicevic, M Eichberger, J Erö, M Friedl, R Frühwirth, VM Ghete, J Hammer, S Hansel, M Hoch, N Hörmann, J Hrubec, M Jeitler, G Kasieczka, K Kastner, M Krammer, D Liko, I De Magrans Abril, I Mikulec, F Mittermayr, B Neuherz, M Oberegger, M Padrta, M Pernicka, H Rohringer, S Schmid, R Schöfbeck, T Schreiner, R Stark, H Steininger, J Strauss, A Taurok, F Teischinger, T Themel, D Uhl, P Wagner, W Waltenberger, G Walzel, E Widl, CE Wulz, V Chekhovsky, O Dvornikov, I Emeliantchik, A Litomin, V Makarenko, I Marfin, V Mossolov, N Shumeiko, A Solin, R Stefanovitch, J Suarez Gonzalez, A Tikhonov, A Fedorov, A Karneyeu, M Korzhik, V Panov, R Zuyeuski, P Kuchinsky, W Beaumont, L Benucci, M Cardaci, EA De Wolf, E Delmeire, D Druzhkin, M Hashemi, X Janssen, T Maes, L Mucibello, S Ochesanu, R Rougny, M Selvaggi, H Van Haevermaet, P Van Mechelen, N Van Remortel, V Adler, S Beauceron, S Blyweert, J D'Hondt, S De Weirdt, O Devroede, J Heyninck, A Kalogeropoulos, J Maes, M Maes, MU Mozer, S Tavernier, W Van Doninck, P Van Mulders, I Villella, O Bouhali, EC Chabert, O Charaf, B Clerbaux, G De Lentdecker

Abstract:

During autumn 2008, the Silicon Strip Tracker was operated with the full CMS experiment in a comprehensive test, in the presence of the 3.8 T magnetic field produced by the CMS superconducting solenoid. Cosmic ray muons were detected in the muon chambers and used to trigger the readout of all CMS sub-detectors. About 15 million events with a muon in the tracker were collected. The efficiency of hit and track reconstruction were measured to be higher than 99% and consistent with expectations from Monte Carlo simulation. This article details the commissioning and performance of the Silicon Strip Tracker with cosmic ray muons. © 2010 IOP Publishing Ltd and SISSA.

Commissioning of the CMS experiment and the cosmic run at four tesla

Journal of Instrumentation 5:3 (2010)

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, W Adam, B Arnold, H Bergauer, T Bergauer, M Dragicevic, M Eichberger, J Erö, M Friedl, R Frühwirth, VM Ghete, J Hammer, S Hansel, M Hoch, N Hörmann, J Hrubec, M Jeitler, G Kasieczka, K Kastner, M Krammer, D Liko, I De Magrans Abril, I Mikulec, F Mittermayr, B Neuherz, M Oberegger, M Padrta, M Pernicka, H Rohringer, S Schmid, R Schöfbeck, T Schreiner, R Stark, H Steininger, J Strauss, A Taurok, F Teischinger, T Themel, D Uhl, P Wagner, W Waltenberger, G Walzel, E Widl, CE Wulz, V Chekhovsky, O Dvornikov, I Emeliantchik, A Litomin, V Makarenko, I Marfin, V Mossolov, N Shumeiko, A Solin, R Stefanovitch, J Suarez Gonzalez, A Tikhonov, A Fedorov, A Karneyeu, M Korzhik, V Panov, R Zuyeuski, P Kuchinsky, W Beaumont, L Benucci, M Cardaci, EA De Wolf, E Delmeire, D Druzhkin, M Hashemi, X Janssen, T Maes, L Mucibello, S Ochesanu, R Rougny, M Selvaggi, H Van Haevermaet, P Van Mechelen, N Van Remortel, V Adler, S Beauceron, S Blyweert, J D'Hondt, S De Weirdt, O Devroede, J Heyninck, A Kalogeropoulos, J Maes, M Maes, MU Mozer, S Tavernier, W Van Doninck, P Van Mulders, I Villella, O Bouhali, EC Chabert, O Charaf, B Clerbaux, G De Lentdecker

Abstract:

The CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the experiment for extended operation. The operational lessons resulting from this exercise were addressed in the subsequent shutdown to better prepare CMS for LHC beams in 2009. The cosmic data collected have been invaluable to study the performance of the detectors, to commission the alignment and calibration techniques, and to make several cosmic ray measurements. The experimental setup, conditions, and principal achievements from this data-taking exercise are described along with a review of the preceding integration activities. © 2010 IOP Publishing Ltd and SISSA.