KiDS+2dFLenS+GAMA: testing the cosmological model with the E-G statistic
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 479:3 (2018) 3422-3437
Obscured star formation in bright z ≃ 7 Lyman-break galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 481:2 (2018) 1631-1644
Abstract:
We present Atacama Large Millimeter/Submillimeter Array observations of the rest-frame far-infrared (FIR) dust continuum emission of six bright Lyman-break galaxies (LBGs) at z ≃ 7. One LBG is detected (5.2σ at peak emission), whilst the others remain individually undetected at the 3σ level. The average FIR luminosity of the sample is found to be LFIR≃2×1011L⊙, corresponding to an obscured star formation rate (SFR) that is comparable to that inferred from the unobscured UV emission. In comparison to the infrared excess (IRX=LFIR/LUV)–β relation, our results are consistent with a Calzetti-like attenuation law (assuming a dust temperature of T = 40–50 K). We find a physical offset of 3kpc between the dust continuum emission and the rest-frame UV light probed by Hubble Space Telescope imaging for galaxy ID65666 at z=7.17+0.09−0.06. The offset is suggestive of an inhomogeneous dust distribution, where 75 per cent of the total star formation activity (SFR≃70M⊙/yr) of the galaxy is completely obscured. Our results provide direct evidence that dust obscuration plays a key role in shaping the bright end of the observed rest-frame UV luminosity function at z ≃ 7, in agreement with cosmological galaxy formation simulations. The existence of a heavily obscured component of galaxy ID65666 indicates that dusty star-forming regions, or even entire galaxies, that are ‘UV dark’ are significant even in the z ≃ 7 galaxy population.On the difficulty of generating gravitational wave turbulence in the early universe
Classical and Quantum Gravity IOP Publishing 35:18 (2018) 187001
Abstract:
A recent article by Galtier and Nazarenko (2017 Phys. Rev. Lett. 119 221101) proposed that weakly nonlinear gravitational waves could result in a turbulent cascade, with energy flowing from high to low frequency modes or vice versa. This is an interesting proposition for early universe cosmology because it could suggest some 'natural' initial conditions for the gravitational background. In this paper we use the ADM formalism to show that, given some simple and, arguably, natural assumptions, such initial conditions lead to expansion (or collapse) of the spacetime on a timescale much faster than that of the turbulent cascade, meaning that the cascade is unlikely to have sufficient time to develop under general conditions. We suggest possible ways in which the expansion could be mitigated to give the cascade time to develop.Photometric redshifts for the Kilo-Degree Survey Machine-learning analysis with artificial neural networks
ASTRONOMY & ASTROPHYSICS 616 (2018) ARTN A69