The fourteenth data release of the Sloan Digital Sky Survey: First spectroscopic data from the extended Baryon Oscillation Sky Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
Astrophysical Journal Supplement Series American Astronomical Society 235:2 (2018) 42
Abstract:
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.Bondi or not Bondi: The impact of resolution on accretion and drag force modelling for Supermassive Black Holes
Monthly Notices of the Royal Astronomical Society Oxford University Press 478:1 (2018) 995-1016
Abstract:
Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above $\mathcal{M}_\infty \geq 3$, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.Universality of the halo mass function in screened gravity theories
(2018)
KiDS-i-800: Comparing weak gravitational lensing measurements from same-sky surveys
Monthly Notices of the Royal Astronomical Society Oxford University Press 477:4 (2018) 4285-4307
Abstract:
We present a weak gravitational lensing analysis of 815 deg2of i-band imaging from the Kilo-Degree Survey (KiDS-i-800). In contrast to the deep r-band observations, which take priority during excellent seeing conditions and form the primary KiDS data set (KiDS-r-450), the complementary yet shallower KiDS-i-800 spans a wide range of observing conditions. The overlapping KiDS-i-800 and KiDS-r-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis we introduce two new 'null' tests. The 'nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-i-800 and KiDS-r-450 shear measurements agree at the level of 1 ± 4 per cent.We use five galaxy lens samples to determine a 'nulled' galaxy-galaxy lensing signal from the full KiDS-i-800 and KiDS-r-450 surveys and find that the measurements agree to 7 ± 5 per cent when the KiDS-i-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.The environment and host haloes of the brightest z~6 Lyman-break galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 477:3 (2018) 3760-3774