New Horizon: On the origin of the stellar disk and spheroid of field galaxies at $z=0.7$

(2019)

Authors:

Min-Jung Park, Sukyoung K Yi, Yohan Dubois, Christophe Pichon, Taysun Kimm, Julien Devriendt, Hoseung Choi, Marta Volonteri, Sugata Kaviraj, Sebastien Peirani

Core Cosmology Library: Precision cosmological predictions for LSST

Astrophysical Journal Supplement American Astronomical Society 242:1 (2019) 2

Authors:

NE Chisari, DAVID Alonso, E Krause, CD Leonard, P Bull, J Neveu, A Villarreal, S Singh, T McClintock, J Ellison, Z Du, J Zuntz, A Mead, S Joudaki, CS Lorenz, T Tröster, J Sanchez, F Lanusse, M Ishak, R Hlozek, J Blazek, J-E Campagne, H Almoubayyed, T Eifler, M Kirby, D Kirkby, S Plaszczynski, A Slosar, M Vrastil, EL Wagoner

Abstract:

The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias, and the halo mass function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering, galaxy–galaxy lensing, and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package written in C, with a Python interface and publicly available at https://github.com/LSSTDESC/CCL.

Core Cosmology Library: Precision Cosmological Predictions for LSST

The Astrophysical Journal Supplement Series American Astronomical Society 242:1 (2019) 2-2

Authors:

Nora Elisa Chisari, David Alonso, Elisabeth Krause, C Danielle Leonard, Philip Bull, Jérémy Neveu, Antonio Villarreal, Sukhdeep Singh, Thomas McClintock, John Ellison, Zilong Du, Joe Zuntz, Alexander Mead, Shahab Joudaki, Christiane S Lorenz, Tilman Tröster, Javier Sanchez, Francois Lanusse, Mustapha Ishak, Renée Hlozek, Jonathan Blazek, Jean-Eric Campagne, Husni Almoubayyed, Tim Eifler, Matthew Kirby, David Kirkby, Stéphane Plaszczynski, Anže Slosar, Michal Vrastil, Erika L Wagoner

From top-hat masking to smooth transitions: P-filter and its application to polarized microwave sky maps

Journal of Cosmology and Astroparticle Physics IOP Publishing 2019:05 (2019) 003-003

Authors:

Hao Liu, James Creswell, Sebastian von Hausegger, Pavel Naselsky

Galaxy Zoo: unwinding the winding problem – observations of spiral bulge prominence and arm pitch angles suggest local spiral galaxies are winding

Monthly Notices of the Royal Astronomical Society Oxford University Press 487:2 (2019) 1808-1820

Authors:

KL Masters, Christopher Lintott, RE Hart, SJ Kruk, Rebecca J Smethurst, K Casteels, WC Keel, BD Simmons, Stanescu, J Tate, S Tomi

Abstract:

We use classifications provided by citizen scientists though Galaxy Zoo to investigate the correlation between bulge size and arm winding in spiral galaxies. Whilst the traditional spiral sequence is based on a combination of both measures, and is supposed to favour arm winding where disagreement exists, we demonstrate that, in modern usage, the spiral classifications Sa–Sd are predominantly based on bulge size, with no reference to spiral arms. Furthermore, in a volume limited sample of galaxies with both automated and visual measures of bulge prominence and spiral arm tightness, there is at best a weak correlation between the two. Galaxies with small bulges have a wide range of arm winding, while those with larger bulges favour tighter arms. This observation, interpreted as revealing a variable winding speed as a function of bulge size, may be providing evidence that the majority of spiral arms are not static density waves, but rather wind-up over time. This suggests the ‘winding problem’ could be solved by the constant reforming of spiral arms, rather than needing a static density wave. We further observe that galaxies exhibiting strong bars tend to have more loosely wound arms at a given bulge size than unbarred spirals. This observations suggests that the presence of a bar may slow the winding speed of spirals, and may also drive other processes (such as density waves) that generate spiral arms. It is remarkable that after over 170 years of observations of spiral arms in galaxies our understanding of them remains incomplete.