Statistical properties of thermal Sunyaev–Zel'dovich maps
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 429:2 (2013) 1564-1584
Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation)
Monthly Notices of the Royal Astronomical Society 429:1 (2013) 661-678
Abstract:
The first half of this paper explores the origin of systematic biases in the measurement of weak gravitational lensing. Compared to previous work, we expand the investigation of point spread function instability and fold in for the first time the effects of non-idealities in electronic imaging detectors and imperfect galaxy shape measurement algorithms. Together, these now explain the additive A(l) and multiplicative M(l) systematics typically reported in current lensing measurements. We find that overall performance is driven by a product of a telescope/camera's absolute performance, and our knowledge about its performance. The second half of this paper propagates any residual shear measurement biases through to their effect on cosmological parameter constraints. Fully exploiting the statistical power of Stage IV weak lensing surveys will require additive biasesA 1.8 × 10-12 and multiplicative biases M 4.0 × -3. These can be allocated between individual budgets in hardware, calibration data and software, using results from the first half of the paper. If instrumentation is stable and well calibrated, we find extant shear measurement software from Gravitational Lensing Accuracy Testing 2010 (GREAT10) already meet requirements on galaxies detected at signal-to-noise ratio = 40. Averaging over a population of galaxies with a realistic distribution of sizes, it also meets requirements for a 2D cosmic shear analysis from space. If used on fainter galaxies or for 3D cosmic shear tomography, existing algorithms would need calibration on simulations to avoid introducing bias at a level similar to the statistical error. Requirements on hardware and calibration data are discussed in more detail in a companion paper. Our analysis is intentionally general, but is specifically being used to drive the hardware and ground segment performance budget for the design of the European Space Agency's recently selected Euclid mission. ©2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes.
Genome biology 14:2 (2013) R20
Abstract:
Background
Understanding how alternative phenotypes arise from the same genome is a major challenge in modern biology. Eusociality in insects requires the evolution of two alternative phenotypes - workers, who sacrifice personal reproduction, and queens, who realize that reproduction. Extensive work on honeybees and ants has revealed the molecular basis of derived queen and worker phenotypes in highly eusocial lineages, but we lack equivalent deep-level analyses of wasps and of primitively eusocial species, the latter of which can reveal how phenotypic decoupling first occurs in the early stages of eusocial evolution.Results
We sequenced 20 Gbp of transcriptomes derived from brains of different behavioral castes of the primitively eusocial tropical paper wasp Polistes canadensis. Surprisingly, 75% of the 2,442 genes differentially expressed between phenotypes were novel, having no significant homology with described sequences. Moreover, 90% of these novel genes were significantly upregulated in workers relative to queens. Differential expression of novel genes in the early stages of sociality may be important in facilitating the evolution of worker behavioral complexity in eusocial evolution. We also found surprisingly low correlation in the identity and direction of expression of differentially expressed genes across similar phenotypes in different social lineages, supporting the idea that social evolution in different lineages requires substantial de novo rewiring of molecular pathways.Conclusions
These genomic resources for aculeate wasps and first transcriptome-wide insights into the origin of castes bring us closer to a more general understanding of eusocial evolution and how phenotypic diversity arises from the same genome.The rise of a tensor instability in Eddington-inspired gravity
(2013)
The rise of a tensor instability in Eddington-inspired gravity
ArXiv 1301.5264 (2013)