A model for halo formation with axion mixed dark matter

Monthly Notices of the Royal Astronomical Society 437:3 (2014) 2652-2663

Authors:

DJE Marsh, J Silk

Abstract:

There are several issues to do with dwarf galaxy predictions in the standard δ cold dark matter (δCDM) cosmology that have suscitated much recent debate about the possible modification of the nature of dark matter as providing a solution. We explore a novel solution involving ultralight axions that can potentially resolve the missing satellites problem, the cusp-core problem and the 'too big to fail' problem. We discuss approximations to non-linear structure formation in dark matter models containing a component of ultralight axions across four orders of magnitude in mass, 10-24 < ma < 10-20 eV, a range too heavy to be well constrained by linear cosmological probes such as the cosmic microwave background and matter power spectrum, and too light/non-interacting for other astrophysical or terrestrial axion searches. We find that an axion of mass ma ~ 10-21 eV contributing approximately 85 per cent of the total dark matter can introduce a significant kpc scale core in a typical Milky Way satellite galaxy in sharp contrast to a thermal relic with a transfer function cut off at the same scale, while still allowing such galaxies to form in significant number. Therefore, ultralight axions do not suffer from the Catch 22 that applies to using a warm dark matter as a solution to the small-scale problems of CDM. Our model simultaneously allows formation of enough highredshift galaxies to allow reconciliation with observational constraints, and also reduces the maximum circular velocities of massive dwarfs so that baryonic feedback may more plausibly resolve the predicted overproduction of massive Milky Way Galaxy dwarf satellites. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

An improved model of charge transfer inefficiency and correction algorithm for the Hubble Space Telescope

Monthly Notices of the Royal Astronomical Society 439:1 (2014) 887-907

Authors:

R Massey, T Schrabback, O Cordes, O Marggraf, H Israel, L Miller, D Hall, M Cropper, T Prod'homme, SM Niemi

Abstract:

Charge-coupled device (CCD) detectors, widely used to obtain digital imaging, can be damaged by high energy radiation. Degraded images appear blurred, because of an effect known as Charge Transfer Inefficiency (CTI), which trails bright objects as the image is read out. It is often possible to correct most of the trailing during post-processing, by moving flux back to where it belongs. We compare several popular algorithms for this: quantifying the effect of their physical assumptions and tradeoffs between speed and accuracy. We combine their best elements to construct a more accurate model of damaged CCDs in the Hubble Space Telescope's Advanced Camera for Surveys/Wide Field Channel, and update it using data up to early 2013. Our algorithm now corrects 98 per cent of CTI trailing in science exposures, a substantial improvement over previous work. Further progress will be fundamentally limited by the presence of read noise. Read noise is added after charge transfer so does not get trailed-but it is incorrectly untrailed during post-processing. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

CFHTLenS: Cosmological constraints from a combination of cosmic shear two-point and three-point correlations

Monthly Notices of the Royal Astronomical Society 441:3 (2014) 2725-2743

Authors:

L Fu, M Kilbinger, T Erben, C Heymans, H Hildebrandt, H Hoekstra, TD Kitching, Y Mellier, L Miller, E Semboloni, P Simon, L Van Waerbeke, J Coupon, J Harnois-Déraps, MJ Hudson, K Kuijken, B Rowe, T Schrabback, S Vafaei, M Velander

Abstract:

Higher order, non-Gaussian aspects of the large-scale structure carry valuable information on structure formation and cosmology, which is complementary to second-order statistics. In this work, we measure second- and third-order weak-lensing aperture-mass moments from the Canada-France-Hawaii Lensing Survey (CFHTLenS) and combine those with cosmic microwave background (CMB) anisotropy probes. The third moment is measured with a significance of 2σ. The combined constraint on Σ8 = σ8(Ωm/0.27)α is improved by 10 per cent, in comparison to the second-order only, and the allowed ranges for Ωm and σ8 are substantially reduced. Including general triangles of the lensing bispectrum yields tighter constraints compared to probing mainly equilateral triangles. Second- and third-order CFHTLenS lensing measurements improve Planck CMB constraints on Ωm and σ8 by 26 per cent for flat Λ cold dark matter. For a model with free curvature, the joint CFHTLenS-Planck result is Ωm = 0.28 ± 0.02 (68 per cent confidence), which is an improvement of 43 per cent compared to Planck alone. We test how our results are potentially subject to three astrophysical sources of contamination: source-lens clustering, the intrinsic alignment of galaxy shapes, and baryonic effects. We explore future limitations of the cosmological use of third-order weak lensing, such as the non-linear model and the Gaussianity of the likelihood function. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

CFHTLenS: The relation between galaxy dark matter haloes and baryons from weak gravitational lensing

Monthly Notices of the Royal Astronomical Society 437:3 (2014) 2111-2136

Authors:

M Velander, E Van Uitert, H Hoekstra, J Coupon, T Erben, C Heymans, H Hildebrandt, TD Kitching, Y Mellier, L Miller, L Van Waerbeke, C Bonnett, L Fu, S Giodini, MJ Hudson, K Kuijken, B Rowe, T Schrabback, E Semboloni

Abstract:

We present a study of the relation between dark matter halo mass and the baryonic content of their host galaxies, quantified through galaxy luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensing and photometric data, obtained from the CFHT Legacy Survey. To interpret the weak lensing signal around our galaxies, we employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4, split into a red and a blue sample. We express the relationship between dark matter halo mass and baryonic observable as a power lawwith pivot points of 1011 h -270 L and 2 × 1011 h -270 M for luminosity and stellar mass, respectively. For the luminosity-halo mass relation, we find a slope of 1.32 ± 0.06 and a normalization of 1.19+0.06 -0.07 × 1013 h -170 M for red galaxies, while for blue galaxies the best-fitting slope is 1.09+0.20-0.13 and the normalization is 0.18+0.04 -0.05 × 1013 h -170 M. Similarly, we find a best-fitting slope of 1.36+0.06-0.07 and a normalization of 1.43+0.11-0.08 × 1013 h -170 M for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98+0.08-0.07 and 0.84+0.20-0.16 × 1013 h -170 M. All numbers convey the 68 per cent confidence limit. For red lenses, the fraction which are satellites inside a larger halo tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2 × 109 h -270 M. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy-galaxy lensing that blue galaxies reside in less clustered environments than red galaxies.We also find that the halo model, while matching the lensing signal around red lenses well, is prone to overpredicting the large-scale signal for faint and less massive blue lenses. This could be a further indication that these galaxies tend to be more isolated than assumed. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Cosmology with a SKA HI intensity mapping survey

Proceedings of Science 9-13-June-2014 (2014)

Authors:

MG Santos, P Bull, D Alonso, S Camera, PG Ferreira, G Bernardi, R Maartens, M Viel, F Villaescusa-Navarro, FB Abdalla, JM Jarvis, RB Metcalf, A Pourtsidou, L Wolz

Abstract:

HI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum - Thus determining the expansion and growth history of the Universe - These surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal.