Size magnification as a complement to cosmic shear

Monthly Notices of the Royal Astronomical Society 430:4 (2013) 2844-2853

Authors:

B Casaponsa, AF Heavens, TD Kitching, L Miller, RB Barreiro, E Martínez-González

Abstract:

We investigate the extent to which cosmic size magnification may be used to complement cosmic shear in weak gravitational lensing surveys, with a view to obtaining high-precision estimates of cosmological parameters. Using simulated galaxy images, we find that unbiased estimation of the convergence field is possible using galaxies with angular sizes larger than the point spread function (PSF) and signal-to-noise ratio in excess of 10. The statistical power is similar to, but not quite as good as, cosmic shear, and it is subject to different systematic effects. Application to ground-based data will be challenging, with relatively large empirical corrections required to account for the fact that many galaxiesare smaller than the PSF, but for space-based data with 0.1-0.2 arcsec resolution, the size distribution of galaxies brighter than i≃24 is almost ideal for accurate estimation of cosmic size magnification. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Constraints on neutrino mass and light degrees of freedom in extended cosmological parameter spaces

Physical Review D American Physical Society (APS) 87:8 (2013) 083523

CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing

Monthly Notices of the Royal Astronomical Society 430:3 (2013) 2200-2220

Authors:

M Kilbinger, L Fu, C Heymans, F Simpson, J Benjamin, T Erben, J Harnois-Déraps, H Hoekstra, H Hildebrandt, TD Kitching, Y Mellier, L Miller, L Van Waerbeke, K Benabed, C Bonnett, J Coupon, MJ Hudson, K Kuijken, B Rowe, T Schrabback, E Semboloni, S Vafaei, M Velander

Abstract:

We present cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) which spans 154 deg2 in five optical bands. Using accurate photometric redshifts and measured shapes for 4.2 million galaxies between redshifts of 0.2 and 1.3, we compute the 2D cosmic shear correlation function over angular scales ranging between 0.8 and 350 arcmin. Using nonlinear models of the dark-matter power spectrum, we constrain cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. The best constraints from lensing alone are obtained for the small-scale density-fluctuations amplitude σ8 scaled with the total matter density Ωm. For a flat Λcold dark matter (ΛCDM) model we obtain Σ8(Ωm/0.27)0.6 = 0.79 ± 0.03. We combine the CFHTLenS data with 7-year Wilkinson Microwave Anisotropy Probe (WMAP7), baryonic acoustic oscillations (BAO): SDSS-III (BOSS) and a Hubble Space Telescope distance-ladder prior on the Hubble constant to get joint constraints. For a flat ΛCDM model, we find Ωm = 0.283 ± 0.010 and Σ8 = 0.813 ± 0.014. In the case of a curved wCDM universe, we obtain Ωm = 0.27 ± 0.03, Σ8 = 0.83 ± 0.04, w0 = -1.10 ± 0.15 and Ωk = 0.006+0.006-0.004. We calculate the Bayesian evidence to compare flat and curved ΛCDM and dark-energy CDM models. From the combination of all four probes, we find models with curvature to be at moderately disfavoured with respect to the flat case. A simple dark-energy model is indistinguishable from ΛCDM. Our results therefore do not necessitate any deviations from the standard cosmological model. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

CFHTLenS: Higher order galaxy-mass correlations probed by galaxy-galaxy-galaxy lensing

Monthly Notices of the Royal Astronomical Society 430:3 (2013) 2476-2498

Authors:

P Simon, T Erben, P Schneider, C Heymans, H Hildebrandt, H Hoekstra, TD Kitching, Y Mellier, L Miller, L Van Waerbeke, C Bonnett, J Coupon, L Fu, MJ Hudson, K Kuijken, BTP Rowe, T Schrabback, E Semboloni, M Velander

Abstract:

We present the first direct measurement of the galaxy-matter bispectrum as a function of galaxy luminosity, stellar mass and type of spectral energy distribution (SED). Our analysis uses a galaxy-galaxy-galaxy lensing technique (G3L), on angular scales between 9 arcsec and 50 arcmin, to quantify (i) the excess surface mass density around galaxy pairs (excess mass hereafter) and (ii) the excess shear-shear correlations around single galaxies, both of which yield a measure of two types of galaxy-matter bispectra. We apply our method to the state-of-the-art Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), spanning 154 square degrees. This survey allows us to detect a significant change of the bispectra with lens properties. Measurements for lens populations with distinct redshift distributions become comparable by a newly devised normalization technique. That will also aid future comparisons to other surveys or simulations. A significant dependence of the normalized G3L statistics on luminosity within-23=Mr=-18 and stellarmass within 5×109M⊙ =M* <2×1011M⊙ is found (h = 0.73). Both bispectra exhibit a stronger signal for more luminous lenses or those with higher stellar mass (up to a factor of 2-3). This is accompanied by a steeper equilateral bispectrum for more luminous or higher stellar mass lenses for the excess mass. Importantly, we find the excess mass to be very sensitive to galaxy type as recently predicted with semianalytic galaxy models: luminous (Mr < -21) late-type galaxies show no detectable signal, while all excess mass detected for luminous galaxies seems to be associated with early-type galaxies. We also present the first observational constraints on third-order stochastic galaxy biasing parameters. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Galaxy Zoo: Motivations of Citizen Scientists

ArXiv 1303.6886 (2013)

Authors:

M Jordan Raddick, Georgia Bracey, Pamela L Gay, Chris J Lintott, Carie Cardamone, Phil Murray, Kevin Schawinski, Alexander S Szalay, Jan Vandenberg

Abstract:

Citizen science, in which volunteers work with professional scientists to conduct research, is expanding due to large online datasets. To plan projects, it is important to understand volunteers' motivations for participating. This paper analyzes results from an online survey of nearly 11,000 volunteers in Galaxy Zoo, an astronomy citizen science project. Results show that volunteers' primary motivation is a desire to contribute to scientific research. We encourage other citizen science projects to study the motivations of their volunteers, to see whether and how these results may be generalized to inform the field of citizen science.