The variable X-ray spectrum of Markarian 766 II. Time-resolved spectroscopy

Astronomy and Astrophysics 475:1 (2007) 121-131

Authors:

TJ Turner, L Miller, JN Reeves, SB Kraemer

Abstract:

Context. The variable X-ray spectra of AGN systematically show steep power-law high states and hard-spectrum low states. The hard, low state has previously been found to be a component with only weak variability. The origin of this component and the relative importance of effects such as absorption and relativistic blurring are currently not clear. Aims. In a follow-up of previous principal components analysis we aim to determine the relative importance of scattering and absorption effects on the time-varying X-ray spectrum of the narrow-line Seyfert 1 galaxy Mrk 766. Methods. Time-resolved spectroscopy, slicing XMM and Suzaku data down to 25 ks elements is used to investigate whether absorption or scattering components dominate the spectral variations in Mrk 766. Results. Time-resolved spectroscopy confirms that spectral variability in Mrk 766 can be explained by either of two interpretations of principal components analysis. Detailed investigation confirm rapid changes in the relative strengths of scattered and direct emission or rapid changes in absorber covering fraction provide good explanations of most of the spectral variability. However, a strong correlation between the 6.97 keV absorption line and primary continuum together with rapid opacity changes show that variations in a complex and multi-layered absorber, most likely a disk wind, are the dominant source of spectral variability in Mrk 766. © ESO 2007.

A 100 ks XMM-Newton view of the Seyfert 1.8 ESO 113-G010 Discovery of large X-ray variability and study of the Fe Kα line complex

Astronomy and Astrophysics 473:1 (2007) 67-76

Authors:

D Porquet, P Uttley, JN Reeves, A Markowitz, S Bianchi, N Grosso, L Miller, S Deluit, IM George

Abstract:

Context. The Seyfert 1.8 galaxy ESO 113-G010 had been observed for the first time above 2 keV by XMM-Newton during a short exposure (∼4 ks) in May 2001. In addition to a significant soft X-ray excess, it showed one of the strongest (in EW) redshifted Fe Kα lines, at 5.4 keV. Aims. We present here a long (100 ks) XMM-Newton follow-up of this source performed in November 2005, in order to study over a longer time-scale its main X-ray properties. Methods. We use both timing analysis (Power Spectra Density analysis, rms spectra, flux-flux analysis) and spectral analysis which mainly focuses on the Fe Ka line complex. Results. The source was found in a higher/softer time-averaged flux state, and timing analysis of this source reveals strong, rapid variability. The Power Spectral Density (PSD) analysis indicates (at 95% confidence level) a break at 3.7-1.7+1.0× 10 -4 Hz. This cut-off frequency is comparable to those measured in some other rapidly-variable Seyferts, such as MCG-6-30-15 and NGC 4051. From the mass-luminosity-time-scale, we infer that MBH ranges from 4 × 106-107 M⊙ and the source is accreting at or close to the Eddington rate (or even higher). The existing data cannot distinguish between spectral pivoting of the continuum and a two-component origin for the spectral softening, primarily because the data do not span a broad enough flux range. In the case of the two-component model, the fractional offsets measured in the flux-flux plots increase significantly toward higher energies (similar to what is observed in MCG-6-30-15) as expected if there exists a constant reflection component. Contrary to May 2001, no significant highly redshifted emission line is observed (which might be related to the source flux level), while two narrow emission lines at about 6.5 keV and 7 keV are observed. The S/N is not high enough to establish if the lines are variable or constant. As already suggested by the 2001 observation, no significant constant narrow 6.4 keV Fe Ka line (EW ≤ 32 eV) is observed, hence excluding any dominant emission from distant cold matter such as a torus in this Seyfert type 1.8 galaxy. © ESO 2007.

Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

ArXiv 0709.2451 (2007)

Authors:

Fabian Heitsch, Lee Hartmann, Adrianne D Slyz, Julien EG Devriendt, Andreas Burkert

Abstract:

We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M$_\odot$. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial''. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.

Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

(2007)

Authors:

Fabian Heitsch, Lee Hartmann, Adrianne D Slyz, Julien EG Devriendt, Andreas Burkert

Magnetized nonlinear thin-shell instability: Numerical studies in two dimensions

Astrophysical Journal 665:1 PART 1 (2007) 445-456

Authors:

F Heitsch, AD Slyz, JEG Devriendt, LW Hartmann, A Burkert

Abstract:

We revisit the analysis of the nonlinear thin shell instability (NTSI) numerically, including magnetic fields. The magnetic tension force is expected to work against the main driver of the NTSI - namely, transverse momentum transport. However, depending on the field strength and orientation, the instability may grow. For fields aligned with the inflow, we find that the NTSI is suppressed only when the Alfvén speed surpasses the (supersonic) velocities generated along the collision interface. Even for fields perpendicular to the inflow, which are the most effective at preventing the NTSI from developing, internal structures form within the expanding slab interface, probably leading to fragmentation in the presence of self-gravity or thermal instabilities. High Reynolds numbers result in local turbulence within the perturbed slab, which in turn triggers reconnection and dissipation of the excess magnetic flux. We find that when the magnetic field is initially aligned with the flow, there exists a (weak) correlation between field strength and gas density. However, for transverse fields, this correlation essentially vanishes. In light of these results, our general conclusion is that instabilities are unlikely to be erased unless the magnetic energy in clouds is much larger than the turbulent energy. Finally, while our study is motivated by the scenario of molecular cloud formation in colliding flows, our results span a larger range of applicability, from supernova shells to colliding stellar winds. © 2007. The American Astronomical Society. All rights reserved.