Interacting spin-2 fields in the Stueckelberg picture

(2013)

Authors:

Johannes Noller, James HC Scargill, Pedro G Ferreira

Interacting spin-2 fields in the Stueckelberg picture

ArXiv 1311.7009 (2013)

Authors:

Johannes Noller, James HC Scargill, Pedro G Ferreira

Abstract:

We revisit and extend the `Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields. We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.

Erratum: Planet hunters. V. A confirmed jupiter-size planet in the habitable zone and 42 planet candidates from the kepler archive data (ApJ (2013) 776 (10))

Astrophysical Journal 778:1 (2013)

Authors:

J Wang, DA Fischer, T Barclay, TS Boyajian, JR Crepp, ME Schwamb, C Lintott, KJ Jek, AM Smith, M Parrish, K Schawinski, JR Schmitt, MJ Giguere, JM Brewer, S Lynn, R Simpson, AJ Hoekstra, TL Jacobs, D Lacourse, HM Schwengeler, M Chopin, R Herszkowicz

Noether Identities and Gauge-Fixing the Action for Cosmological Perturbations

(2013)

Authors:

Macarena Lagos, Máximo Bañados, Pedro G Ferreira, Sebastián García-Sáenz

Noether Identities and Gauge-Fixing the Action for Cosmological Perturbations

ArXiv 1311.3828 (2013)

Authors:

Macarena Lagos, Máximo Bañados, Pedro G Ferreira, Sebastián García-Sáenz

Abstract:

We propose and develop a general algorithm for finding the action for cosmological perturbations which rivals the conventional, gauge-invariant approach and can be applied to theories with more than one metric. We then apply it to a particular case of bigravity, focusing on the Eddington- inspired Born-Infeld theory, and show that we can obtain a nearly scale-invariant power spectrum for both scalar and tensor primordial quantum perturbations. Unfortunately, in the case of the minimal Eddington-inspired Born-Infeld theory, we find that the tensor-to-scalar ratio of perturbations is unacceptably large. We discuss the applicability of our general method and the possibility of resurrecting the specific theory we have looked at.