Weak gravitational lensing with the Square Kilometre Array
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.CONSTRAINT ON LIGHT DIPOLE DARK MATTER FROM HELIOSEISMOLOGY
ASTROPHYSICAL JOURNAL LETTERS 780:2 (2014) ARTN L15
Galaxy Zoo: Observing Secular Evolution Through Bars
STRUCTURE AND DYNAMICS OF DISK GALAXIES 480 (2014) 165-169
Probing the accelerating Universe with radio weak lensing in the JVLA Sky Survey
(2013)
Abstract:
We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. We highlight the potential advantages and unique aspects of performing weak lensing in the radio band. In particular, the inclusion of continuum polarisation information can greatly reduce noise in weak lensing reconstructions and can also remove the effects of intrinsic galaxy alignments, the key astrophysical systematic effect that limits weak lensing at all wavelengths. We identify a VLASS "deep fields" program (total area ~10-20 square degs), to be conducted at L-band and with high-resolution (A-array configuration), as the optimal survey strategy from the point of view of weak lensing science. Such a survey will build on the unique strengths of the JVLA and will remain unsurpassed in terms of its combination of resolution and sensitivity until the advent of the Square Kilometre Array. We identify the best fields on the JVLA-accessible sky from the point of view of overlapping with existing deep optical and near infra-red data which will provide crucial redshift information and facilitate a host of additional compelling multi-wavelength science.Probing the accelerating Universe with radio weak lensing in the JVLA Sky Survey
ArXiv 1312.5618 (2013)