Galaxy Zoo: Observing Secular Evolution Through Bars
ArXiv 1310.2941 (2013)
Abstract:
In this paper, we use the Galaxy Zoo 2 dataset to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR), and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of $23.6\pm 0.4\%$, of which 1,154 barred galaxies also have bar length measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anti-correlated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and bar length with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution which include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks; a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as due to the complicated effects of classical bulges and central mass concentrations on bar evolution, and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies, but are a critical evolutionary driver of their host galaxies in the local universe ($z<1$).PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An Extended White Paper
(2013)
PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An Extended White Paper
ArXiv 1310.1554 (2013)
Abstract:
PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISMA few cosmological implications of tensor nonlocalities
ArXiv 1310.1238 (2013)