Dark energy and neutrino masses from future measurements of the expansion history and growth of structure
Physical Review D American Physical Society (APS) 86:2 (2012) 023526
A filament of dark matter between two clusters of galaxies
Nature 487:7406 (2012) 202-204
Abstract:
It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments. The thread-like structure of this 'cosmic web' has been traced by galaxy redshift surveys for decades. More recently, the warm-hot intergalactic medium (a sparse plasma with temperatures of 10 5 kelvin to 10 7 kelvin) residing in low-redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter, has remained elusive, because earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignments of dark and luminous matter. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft-X-ray emission, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament. © 2012 Macmillan Publishers Limited. All rights reserved.The resolved stellar population in 50 regions of M83 from HST/WFC3 early release science observations
Astrophysical Journal 753:1 (2012)
Abstract:
We present a multi-wavelength photometric study of 15,000 resolved stars in the nearby spiral galaxy M83 (NGC5236, D = 4.61Mpc) based on Hubble Space Telescope Wide Field Camera 3 observations using four filters:F336W, F438W, F555W, and F814W. We select 50 regions (an average size of 260pc by 280pc) in the spiral arm and inter-arm areas of M83 and determine the age distribution of the luminous stellar populations in each region. This is accomplished by correcting for extinction toward each individual star by comparing its colors with predictions from stellar isochrones. We compare the resulting luminosity-weighted mean ages of the luminous stars in the 50 regions with those determined from several independent methods, including the number ratio of red-to-blue supergiants, morphological appearance of the regions, surface brightness fluctuations, and the ages of clusters in the regions. We find reasonably good agreement between these methods. We also find that young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with the scenario that star formation is associated with the spiral arms, and stars form primarily in star clusters and then disperse on short timescales to form the field population. The locations of Wolf-Rayet stars are found to correlate with the positions of many of the youngest regions, providing additional support for our ability to accurately estimate ages. We address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected. © 2012. The American Astronomical Society. All rights reserved.Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor
(2012)
Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor
ArXiv 1206.5838 (2012)