HI galaxy simulations for the SKA: Number counts and bias
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
This chapter describes the assumed specifications and sensitivities for HI galaxy surveys with SKA1 and SKA2. It addresses the expected galaxy number densities based on available simulations as well as the clustering bias over the underlying dark matter. It is shown that a SKA1 HI galaxy survey should be able to find around 5×106 galaxies over 5,000 deg2 (up to z ∼ 0:8), while SKA2 should find ∼ 109 galaxies over 30,000 deg2 (up to z ∼ 2:5). The numbers presented here have been used throughout the cosmology chapters for forecasting.High redshift signatures in the 21 cm forest due to cosmic string wakes
Journal of Cosmology and Astroparticle Physics IOP Publishing 2014:01 (2014) 013-013
Measuring baryon acoustic oscillations with future SKA surveys
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
The imprint of baryon acoustic oscillations (BAO) in large-scale structure can be used as a standard ruler for mapping out the cosmic expansion history, and hence for testing cosmological models. In this chapter we briefly describe the scientific background to the BAO technique, and forecast the potential of the Phase 1 and 2 SKA telescopes to perform BAO surveys using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys. We find that a 25,000 deg2 intensity mapping survey on a Phase 1 array will preferentially constrain the radial BAO, providing a highly competitive 2% constraint on the expansion rate at z ≃ 2. A 30,000 deg2 galaxy redshift survey on SKA2 will outperform all other planned experiments for z < ∼ 1:4.Measuring redshift-space distortions with future SKA surveys
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
The peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-ofsight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this short chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.Playing with science: Gamised aspects of gamification found on the online citizen science project - Zooniverse
15th International Conference on Intelligent Games and Simulation, GAME-ON 2014 (2014) 15-22