Ricci focusing, shearing, and the expansion rate in an almost homogeneous Universe

ArXiv 1204.0909 (2012)

Authors:

Krzysztof Bolejko, Pedro G Ferreira

Abstract:

The Universe is inhomogeneous, and yet it seems to be incredibly well-characterised by a homogeneous relativistic model. One of the current challenges is to accurately characterise the properties of such a model. In this paper we explore how inhomogeneities may affect the overall optical properties of the Universe by quantifying how they can bias the redshift-distance relation in a number of toy models that mimic the real Universe. The models that we explore are statistically homogeneous on large scales. We find that the effect of inhomogeneities is of order of a few percent, which can be quite important in precise estimation of cosmological parameters. We discuss what lessons can be learned to help us tackle a more realistic inhomogeneous universe.

CFHTLenS: Improving the quality of photometric redshifts with precision photometry

Monthly Notices of the Royal Astronomical Society 421:3 (2012) 2355-2367

Authors:

H Hildebrandt, T Erben, K Kuijken, L van Waerbeke, C Heymans, J Coupon, J Benjamin, C Bonnett, L Fu, H Hoekstra, TD Kitching, Y Mellier, L Miller, M Velander, MJ Hudson, BTP Rowe, T Schrabback, E Semboloni, N Benítez

Abstract:

Here we present the results of various approaches to measure accurate colours and photometric redshifts (photo-z) from wide-field imaging data. We use data from the Canada-France-Hawaii Telescope Legacy Survey which have been re-processed by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) team in order to carry out a number of weak gravitational lensing studies. An emphasis is put on the correction of systematic effects in the photo-z arising from the different point spread functions (PSFs) in the five optical bands. Different ways of correcting these effects are discussed and the resulting photo-z accuracies are quantified by comparing the photo-z to large spectroscopic redshift (spec-z) data sets. Careful homogenization of the PSF between bands leads to increased overall accuracy of photo-z. The gain is particularly pronounced at fainter magnitudes where galaxies are smaller and flux measurements are affected more by PSF effects. We discuss ways of defining more secure subsamples of galaxies as well as a shape- and colour-based star-galaxy separation method, and we present redshift distributions for different magnitude limits. We also study possible re-calibrations of the photometric zero-points (ZPs) with the help of galaxies with known spec-z. We find that if PSF effects are properly taken into account, a re-calibration of the ZPs becomes much less important suggesting that previous such re-calibrations described in the literature could in fact be mostly corrections for PSF effects rather than corrections for real inaccuracies in the ZPs. The implications of this finding for future surveys like the Kilo Degree Survey (KiDS), Dark Energy Survey (DES), Large Synoptic Survey Telescope or Euclid are mixed. On the one hand, ZP re-calibrations with spec-z values might not be as accurate as previously thought. On the other hand, careful PSF homogenization might provide a way out and yield accurate, homogeneous photometry without the need for full spectroscopic coverage. This is the first paper in a series describing the technical aspects of CFHTLenS. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

The Milky Way Project: A statistical study of massive star formation associated with infrared bubbles

ArXiv 1203.5486 (2012)

Authors:

Sarah Kendrew, Robert J Simpson, Eli Bressert, Matthew S Povich, Reid Sherman, Chris Lintott, Thomas P Robitaille, Kevin Schawinski, Grace Wolf-Chase

Abstract:

The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this dataset with the Red MSX Source catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of < 2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources we find that 67+/-3% of MYSOs and (ultra)compact H II regions appear associated with a bubble. We estimate that approximately 22+/-2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.

Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: Methods, tests and implications for cosmological simulations

Monthly Notices of the Royal Astronomical Society 420:3 (2012) 2662-2683

Authors:

Y Dubois, J Devriendt, A Slyz, R Teyssier

Abstract:

We develop a subgrid model for the growth of supermassive black holes (BHs) and their associated active galactic nucleus (AGN) feedback in hydrodynamical cosmological simulations. This model transposes previous attempts to describe BH accretion and AGN feedback with the smoothed particle hydrodynamics (SPH) technique to the adaptive mesh refinement framework. It also furthers their development by implementing a new jet-like outflow treatment of the AGN feedback which we combine with the heating mode traditionally used in the SPH approach. Thus, our approach allows one to test the robustness of the conclusions derived from simulating the impact of self-regulated AGN feedback on galaxy formation vis-à-vis the numerical method. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates on to the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates which not only deposits energy, but also deposits mass and momentum on the grid. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the co-evolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be able to efficiently prevent the accumulation of and/or expel cold gas out of haloes/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion of cold material in the early Universe that drives Eddington-limited accretion on to BHs. Quasar activity is also enhanced at high redshift. However, as structures grow in mass and lose their cold material through star formation and efficient BH feedback ejection, the AGN activity in the low-redshift Universe becomes more and more dominated by the radio mode, which powers jets through the hot circumgalactic medium. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Spheroidal post-mergers in the local Universe

Monthly Notices of the Royal Astronomical Society 420:3 (2012) 2139-2146

Authors:

A Carpineti, S Kaviraj, D Darg, C Lintott, K Schawinski, S Shabala

Abstract:

Galaxy merging is a fundamental aspect of the standard hierarchical galaxy formation paradigm. Recently, the Galaxy Zoo project has compiled a large, homogeneous catalogue of 3373 mergers, through direct visual inspection of the entire Sloan Digital Sky Survey spectroscopic sample. We explore a subset of galaxies from this catalogue that are spheroidal 'post-mergers' (SPMs) - where a single remnant is in the final stages of relaxation after the merger and shows evidence for a dominant bulge, making them plausible progenitors of early-type galaxies. Our results indicate that the SPMs have bluer colours than the general early-type galaxy population possibly due to merger-induced star formation. An analysis using optical emission-line ratios indicates that 20 of our SPMs exhibit LINER or Seyfert-like activity (68 per cent), while the remaining 10 galaxies are classified as either star forming (16 per cent) or quiescent (16 per cent). A comparison to the emission-line activity in the ongoing mergers from Darg et al. indicates that the active galactic nuclei (AGN) fraction rises in the post-mergers, suggesting that the AGN phase probably becomes dominant only in the very final stages of the merger process. The optical colours of the SPMs and the plausible mass ratios for their progenitors indicate that, while a minority are consistent with major mergers between two early-type galaxies, the vast majority are remnants of major mergers where at least one progenitor is a late-type galaxy. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.