CFHTLenS: Mapping the large-scale structure with gravitational lensing
Monthly Notices of the Royal Astronomical Society 433:4 (2013) 3373-3388
Abstract:
We present a quantitative analysis of the largest contiguous maps of projected mass density obtained from gravitational lensing shear. We use data from the 154 deg2 covered by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). Our study is the first attempt to quantitatively characterize the scientific value of lensing maps, which could serve in the future as a complementary approach to the study of the dark universe with gravitational lensing. We show that mass maps contain unique cosmological information beyond that of traditional two-point statistical analysis techniques. Using a series of numerical simulations, we first show how, reproducing the CFHTLenS observing conditions, gravitational lensing inversion provides a reliable estimate of the projected matter distribution of large-scale structure. We validate our analysis by quantifying the robustness of the maps with various statistical estimators. We then apply the same process to the CFHTLenS data. We find that the two-point correlation function of the projected mass is consistent with the cosmological analysis performed on the shear correlation function discussed in the CFHTLenS companion papers. The maps also lead to a significant measurement of the third-order moment of the projected mass, which is in agreement with analytic predictions, and to a marginal detection of the fourth-order moment. Tests for residual systematics are found to be consistent with zero for the statistical estimators we used. A new approach for the comparison of the reconstructed mass map to that predicted from the galaxy distribution reveals the existence of giant voids in the dark matter maps as large as 3° on the sky. Our analysis shows that lensing mass maps are not only consistent with the results obtained by the traditional shear approach, but they also appear promising for new techniques such as peak statistics and the morphological analysis of the projected dark matter distribution. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Newborn spheroids at high redshift: When and how did the dominant, old stars in today's massive galaxies form?
Monthly Notices of the Royal Astronomical Society 428:2 (2013) 925-934
Abstract:
We study ~330 massive (M* > 109.5M⊙), newborn spheroidal galaxies (SGs) around the epoch of peak star formation (1 < z < 3) to explore the high-redshift origin of SGs and gain insight into when and how the old stellar populations that dominate today's Universe formed. The sample is drawn from the Hubble Space Telescope (HST)/WFC3 Early-Release Science programme, which provides deep 10-filter (0.2-1.7 μm) HST imaging over one-third of the GOODS-South field. We find that the star formation episodes that built our SGs likely peaked in the redshift range 2 < z < 5 (with a median of z ~ 3) and have decay time-scales shorter than ~1.5Gyr. Starburst time-scales and ages show no trend with stellar mass in the range 109.5 < M* < 1010.5 M⊙. However, the time-scales show increased scatter towards lower values (<0.3 Gyr) for M* > 1010.5M⊙, and an age trend becomes evident in this mass regime: SGs with M* > 1011.5M⊙ are ~2 Gyr older than their counterparts with M* < 1010.5M⊙. Nevertheless, a smooth downsizing trend with galaxy mass is not observed, and the large scatter in starburst ages indicates that SGs are not a particularly coeval population. Around half of the blue SGs appear not to drive their star formation via major mergers, and those that have experienced a recent major merger show only modest enhancements (~40 per cent) in their specific star formation rates. Our empirical study indicates that processes other than major mergers (e.g. violent disc instability driven by cold streams and/or minor mergers) likely play a dominant role in building SGs, and creating a significant fraction of the old stellar populations that dominate today's Universe. © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.On the shear estimation bias induced by the spatial variation of colour across galaxy profiles
Monthly Notices of the Royal Astronomical Society 432:3 (2013) 2385-2401
Abstract:
The spatial variation of the colour of a galaxy may introduce a bias in the measurement of its shape if the point spread function (PSF) profile depends on wavelength. We study how this bias depends on the properties of the PSF and the galaxies themselves. The bias depends on the scales used to estimate the shape, which may be used to optimize methods to reduce the bias. Here, we develop a general approach to quantify the bias. Although applicable to any weak lensing survey, we focus on the implications for the ESA Euclid mission. Based on our study of synthetic galaxies, we find that the bias is a few times 10-3 for a typical galaxy observed by Euclid. Consequently, it cannot be neglected and needs to be accounted for. We demonstrate how one can do so using spatially resolved observations of galaxies in two filters. We show that Hubble Space Telescope (HST) observations in the F606W and F814W filters allow us to model and reduce the bias by an order of magnitude, sufficient to meet Euclid's scientific requirements. The precision of the correction is ultimately determined by the number of galaxies for which spatially resolved observations in at least two filters are available. We use results from the Millennium simulation to demonstrate that archival HST data will be sufficient for the tomographic cosmic shear analysis with the Euclid data set. © 2013 The Author. Published by Oxford University Press on behalf of the Royal Astronomical Society.Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes
Genome Biology Springer Nature 14:2 (2013) r20
Cosmology on Ultralarge Scales with Intensity Mapping of the Neutral Hydrogen 21 cm Emission: Limits on Primordial Non-Gaussianity
PHYSICAL REVIEW LETTERS 111:17 (2013) ARTN 171302