CFHTLenS: Testing the laws of gravity with tomographic weak lensing and redshift-space distortions

Monthly Notices of the Royal Astronomical Society 429:3 (2013) 2249-2263

Authors:

F Simpson, C Heymans, D Parkinson, C Blake, M Kilbinger, J Benjamin, T Erben, H Hildebrandt, H Hoekstra, TD Kitching, Y Mellier, L Miller, L Van Waerbeke, J Coupon, L Fu, J Harnois-Déraps, MJ Hudson, K Kuijken, B Rowe, T Schrabback, E Semboloni, S Vafaei, M Velander

Abstract:

Dark energy may be the first sign of new fundamental physics in the Universe, taking either a physical form or revealing a correction to Einsteinian gravity. Weak gravitational lensing and galaxy peculiar velocities provide complementary probes of general relativity, and in combination allow us to test modified theories of gravity in a unique way.We perform such an analysis by combining measurements of cosmic shear tomography from the Canada-France- Hawaii Telescope Lensing Survey (CFHTLenS) with the growth of structure from theWiggleZ Dark Energy Survey and the Six-degree-Field Galaxy Survey, producing the strongest existing joint constraints on the metric potentials that describe general theories of gravity. For scaleindependent modifications to the metric potentials which evolve linearly with the effective dark energy density, we find present-day cosmological deviations in the Newtonian potential and curvature potential from the prediction of general relativity to be δψ/ψ = 0.05 ± 0.25 and δφ/φ=-0.05 ± 0.3, respectively (68 per cent confidence limits). © 2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

CPEB1 coordinates alternative 3′-UTR formation with translational regulation

Nature Springer Nature 495:7439 (2013) 121-125

Authors:

Felice-Alessio Bava, Carolina Eliscovich, Pedro G Ferreira, Belen Miñana, Claudia Ben-Dov, Roderic Guigó, Juan Valcárcel, Raúl Méndez

Statistical properties of thermal Sunyaev–Zel'dovich maps

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 429:2 (2013) 1564-1584

Authors:

Dipak Munshi, Shahab Joudaki, Joseph Smidt, Peter Coles, Scott T Kay

Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation)

Monthly Notices of the Royal Astronomical Society 429:1 (2013) 661-678

Authors:

R Massey, H Hoekstra, T Kitching, J Rhodes, M Cropper, J Amiaux, D Harvey, Y Mellier, M Meneghetti, L Miller, S Paulin-Henriksson, S Pires, R Scaramella, T Schrabback

Abstract:

The first half of this paper explores the origin of systematic biases in the measurement of weak gravitational lensing. Compared to previous work, we expand the investigation of point spread function instability and fold in for the first time the effects of non-idealities in electronic imaging detectors and imperfect galaxy shape measurement algorithms. Together, these now explain the additive A(l) and multiplicative M(l) systematics typically reported in current lensing measurements. We find that overall performance is driven by a product of a telescope/camera's absolute performance, and our knowledge about its performance. The second half of this paper propagates any residual shear measurement biases through to their effect on cosmological parameter constraints. Fully exploiting the statistical power of Stage IV weak lensing surveys will require additive biasesA 1.8 × 10-12 and multiplicative biases M 4.0 × -3. These can be allocated between individual budgets in hardware, calibration data and software, using results from the first half of the paper. If instrumentation is stable and well calibrated, we find extant shear measurement software from Gravitational Lensing Accuracy Testing 2010 (GREAT10) already meet requirements on galaxies detected at signal-to-noise ratio = 40. Averaging over a population of galaxies with a realistic distribution of sizes, it also meets requirements for a 2D cosmic shear analysis from space. If used on fainter galaxies or for 3D cosmic shear tomography, existing algorithms would need calibration on simulations to avoid introducing bias at a level similar to the statistical error. Requirements on hardware and calibration data are discussed in more detail in a companion paper. Our analysis is intentionally general, but is specifically being used to drive the hardware and ground segment performance budget for the design of the European Space Agency's recently selected Euclid mission. ©2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

The rise of a tensor instability in Eddington-inspired gravity

(2013)

Authors:

Celia Escamilla-Rivera, Maximo Banados, Pedro G Ferreira