Spheroidal post-mergers in the local Universe
Monthly Notices of the Royal Astronomical Society 420:3 (2012) 2139-2146
Abstract:
Galaxy merging is a fundamental aspect of the standard hierarchical galaxy formation paradigm. Recently, the Galaxy Zoo project has compiled a large, homogeneous catalogue of 3373 mergers, through direct visual inspection of the entire Sloan Digital Sky Survey spectroscopic sample. We explore a subset of galaxies from this catalogue that are spheroidal 'post-mergers' (SPMs) - where a single remnant is in the final stages of relaxation after the merger and shows evidence for a dominant bulge, making them plausible progenitors of early-type galaxies. Our results indicate that the SPMs have bluer colours than the general early-type galaxy population possibly due to merger-induced star formation. An analysis using optical emission-line ratios indicates that 20 of our SPMs exhibit LINER or Seyfert-like activity (68 per cent), while the remaining 10 galaxies are classified as either star forming (16 per cent) or quiescent (16 per cent). A comparison to the emission-line activity in the ongoing mergers from Darg et al. indicates that the active galactic nuclei (AGN) fraction rises in the post-mergers, suggesting that the AGN phase probably becomes dominant only in the very final stages of the merger process. The optical colours of the SPMs and the plausible mass ratios for their progenitors indicate that, while a minority are consistent with major mergers between two early-type galaxies, the vast majority are remnants of major mergers where at least one progenitor is a late-type galaxy. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.Planet Hunters: New Kepler planet candidates from analysis of quarter 2
ArXiv 1202.6007 (2012)
Abstract:
We present new planet candidates identified in NASA Kepler quarter two public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false-positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R_Earth. The latter star has an additional known planet candidate with a radius of 5.05 R_Earth and a period of 134.49 which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncatalogued.Citizen Science: Contributions to Astronomy Research
ArXiv 1202.2577 (2012)
Abstract:
The contributions of everyday individuals to significant research has grown dramatically beyond the early days of classical birdwatching and endeavors of amateurs of the 19th century. Now people who are casually interested in science can participate directly in research covering diverse scientific fields. Regarding astronomy, volunteers, either as individuals or as networks of people, are involved in a variety of types of studies. Citizen Science is intuitive, engaging, yet necessarily robust in its adoption of sci-entific principles and methods. Herein, we discuss Citizen Science, focusing on fully participatory projects such as Zooniverse (by several of the au-thors CL, AS, LF, SB), with mention of other programs. In particular, we make the case that citizen science (CS) can be an important aspect of the scientific data analysis pipelines provided to scientists by observatories.Galaxy Zoo: Building the low-mass end of the red sequence with local post-starburst galaxies
Monthly Notices of the Royal Astronomical Society 420:2 (2012) 1684-1692
Abstract:
We present a study of local post-starburst galaxies (PSGs) using the photometric and spectroscopic observations from the Sloan Digital Sky Survey and the results from the Galaxy Zoo project. We find that the majority of our local PSG population have neither early- nor late-type morphologies but occupy a well-defined space within the colour-stellar mass diagram, most notably, the low-mass end of the 'green valley' below the transition mass thought to be the mass division between low-mass star-forming galaxies and high-mass passively evolving bulge-dominated galaxies. Our analysis suggests that it is likely that local PSGs will quickly transform into 'red', low-mass early-type galaxies as the stellar morphologies of the 'green' PSGs largely resemble that of the early-type galaxies within the same mass range. We propose that the current population of PSGs represents a population of galaxies which is rapidly transitioning between the star-forming and the passively evolving phases. Subsequently, these PSGs will contribute towards the build-up of the low-mass end of the 'red sequence' once the current population of young stars fade and stars are no longer being formed. These results are consistent with the idea of 'downsizing' where the build-up of smaller galaxies occurs at later epochs. © 2012 CSIRO Monthly Notices of the Royal Astronomical Society © 2012 RAS.Planet Hunters: The first two planet candidates identified by the public using the Kepler public archive data
Monthly Notices of the Royal Astronomical Society 419:4 (2012) 2900-2911