The Galaxy Zoo survey for giant AGN-ionized clouds: Past and present black hole accretion events

Monthly Notices of the Royal Astronomical Society 420:1 (2012) 878-900

Authors:

WC Keel, SD Chojnowski, VN Bennert, K Schawinski, CJ Lintott, S Lynn, A Pancoast, C Harris, AM Nierenberg, A Sonnenfeld, R Proctor

Abstract:

Some active galactic nuclei (AGN) are surrounded by extended emission-line regions (EELRs), which trace both the illumination pattern of escaping radiation and its history over the light travel time from the AGN to the gas. From a new set of such EELRs, we present evidence that the AGN in many Seyfert galaxies undergo luminous episodes 0.2-2years in duration. Motivated by the discovery of the spectacular nebula known as Hanny's Voorwerp, ionized by a powerful AGN which has apparently faded dramatically withinyears, Galaxy Zoo volunteers have carried out both targeted and serendipitous searches for similar emission-line clouds around low-redshift galaxies. We present the resulting list of candidates and describe spectroscopy identifying 19 galaxies with AGN-ionized regions at projected radiikpc. This search recovered known EELRs (such as Mrk 78, Mrk 266 and NGC 5252) and identified additional previously unknown cases, one with detected emission tokpc. One new Sy 2 was identified. At least 14/19 are in interacting or merging systems, suggesting that tidal tails are a prime source of distant gas out of the galaxy plane to be ionized by an AGN. We see a mix of one- and two-sided structures, with observed cone angles from 23to 112. We consider the energy balance in the ionized clouds, with lower and upper bounds on ionizing luminosity from recombination and ionization-parameter arguments, and estimate the luminosity of the core from the far-infrared data. The implied ratio of ionizing radiation seen by the clouds to that emitted by the nucleus, on the assumption of a non-variable nuclear source, ranges from 0.02 to; 7/19 exceed unity. Small values fit well with a heavily obscured AGN in which only a small fraction of the ionizing output escapes to be traced by surrounding gas. However, large values may require that the AGN has faded over tens of thousands of years, giving us several examples of systems in which such dramatic long-period variation has occurred; this is the only current technique for addressing these time-scales in AGN history. The relative numbers of faded and non-faded objects we infer, and the projected extents of the ionized regions, give our estimate (0.2-2years) for the length of individual bright phases. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

The distribution of interplanetary dust between 0.96 and 1.04 au as inferred from impacts on the STEREO spacecraft observed by the heliospheric imagers

Monthly Notices of the Royal Astronomical Society 420:2 (2012) 1355-1366

Authors:

CJ Davis, JA Davies, OC St Cyr, M Campbell-Brown, A Skelt, M Kaiser, N Meyer-Vernet, S Crothers, C Lintott, A Smith, S Bamford, EML Baeten

Abstract:

The distribution of dust in the ecliptic plane between 0.96 and 1.04 au has been inferred from impacts on the two Solar Terrestrial Relations Observatory (STEREO) spacecraft through observation of secondary particle trails and unexpected off-points in the heliospheric imager (HI) cameras. This study made use of analysis carried out by members of a distributed web-based citizen science project Solar Stormwatch. A comparison between observations of the brightest particle trails and a survey of fainter trails shows consistent distributions. While there is no obvious correlation between this distribution and the occurrence of individual meteor streams at Earth, there are some broad longitudinal features in these distributions that are also observed in sources of the sporadic meteor population. The different position of the HI instrument on the two STEREO spacecraft leads to each sampling different populations of dust particles. The asymmetry in the number of trails seen by each spacecraft and the fact that there are many more unexpected off-points in the HI-B than in HI-A indicates that the majority of impacts are coming from the apex direction. For impacts causing off-points in the HI-B camera, these dust particles are estimated to have masses in excess of 10 -17 kg with radii exceeding 0.1μm. For off-points observed in the HI-A images, which can only have been caused by particles travelling from the anti-apex direction, the distribution is consistent with that of secondary 'storm' trails observed by HI-B, providing evidence that these trails also result from impacts with primary particles from an anti-apex source. Investigating the mass distribution for the off-points of both HI-A and HI-B, it is apparent that the differential mass index of particles from the apex direction (causing off-points in HI-B) is consistently above 2. This indicates that the majority of the mass is within the smaller particles of this population. In contrast, the differential mass index of particles from the anti-apex direction (causing off-points in HI-A) is consistently below 2, indicating that the majority of the mass is to be found in larger particles of this distribution. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

The Milky Way Project First Data Release: A Bubblier Galactic Disk

ArXiv 1201.6357 (2012)

Authors:

RJ Simpson, MS Povich, S Kendrew, CJ Lintott, E Bressert, K Arvidsson, C Cyganowski, S Maddison, K Schawinski, R Sherman, AM Smith, G Wolf-Chase

Abstract:

We present a new catalogue of 5,106 infrared bubbles created through visual classification via the online citizen science website 'The Milky Way Project'. Bubbles in the new catalogue have been independently measured by at least 5 individuals, producing consensus parameters for their position, radius, thickness, eccentricity and position angle. Citizen scientists - volunteers recruited online and taking part in this research - have independently rediscovered the locations of at least 86% of three widely-used catalogues of bubbles and H ii regions whilst finding an order of magnitude more objects. 29% of the Milky Way Project catalogue bubbles lie on the rim of a larger bubble, or have smaller bubbles located within them, opening up the possibility of better statistical studies of triggered star formation. Also outlined is the creation of a 'heat map' of star-formation activity in the Galactic plane. This online resource provides a crowd-sourced map of bubbles and arcs in the Milky Way, and will enable better statistical analysis of Galactic star-formation sites.

Connecting the cosmic web to the spin of dark halos: implications for galaxy formation

ArXiv 1201.5794 (2012)

Authors:

Sandrine Codis, Christophe Pichon, Julien Devriendt, Adrianne Slyz, Dmitry Pogosyan, Yohan Dubois, Thierry Sousbie

Abstract:

We investigate the alignment of the spin of dark matter halos relative (i) to the surrounding large-scale filamentary structure, and (ii) to the tidal tensor eigenvectors using the Horizon 4pi dark matter simulation which resolves over 43 million dark matter halos at redshift zero. We detect a clear mass transition: the spin of dark matter halos above a critical mass tends to be perpendicular to the closest filament, and aligned with the intermediate axis of the tidal tensor, whereas the spin of low-mass halos is more likely to be aligned with the closest filament. Furthermore, this critical mass of 5 10^12 is redshift-dependent and scales as (1+z)^-2.5. We propose an interpretation of this signal in terms of large-scale cosmic flows. In this picture, most low-mass halos are formed through the winding of flows embedded in misaligned walls; hence they acquire a spin parallel to the axis of the resulting filaments forming at the intersection of these walls. On the other hand, more massive halos are typically the products of later mergers along such filaments, and thus they acquire a spin perpendicular to this direction when their orbital angular momentum is converted into spin. We show that this scenario is consistent with both the measured excess probabilities of alignment w.r.t. the eigen-directions of the tidal tensor, and halo merger histories. On a more qualitative level, it also seems compatible with 3D visualization of the structure of the cosmic web as traced by "smoothed" dark matter simulations or gas tracer particles. Finally, it provides extra support to the disc forming paradigm presented by Pichon et al (2011) as it extends it by characterizing the geometry of secondary infall at high redshift.

Connecting the cosmic web to the spin of dark halos: implications for galaxy formation

(2012)

Authors:

Sandrine Codis, Christophe Pichon, Julien Devriendt, Adrianne Slyz, Dmitry Pogosyan, Yohan Dubois, Thierry Sousbie