Halo abundances and shear in void models

Physics of the Dark Universe Elsevier 1:1-2 (2012) 24-31

Authors:

David Alonso, J García-Bellido, T Haugbølle, A Knebe

Abstract:

We study the non-linear gravitational collapse of dark matter into halos through numerical N-body simulations of Lemaître–Tolman–Bondi void models. We extend the halo mass function formalism to these models in a consistent way. This extension not only compares well with the simulated data at all times and radii, but it also gives interesting clues about the impact of the background shear on the growth of perturbations. Our results give hints about the possibility of constraining the background shear via cluster number counts, which could then give rise to strong constraints on general inhomogeneous models, of any scale.

Lyman-alpha emission properties of simulated galaxies: interstellar medium structure and inclination effects

ArXiv 1208.4781 (2012)

Authors:

Anne Verhamme, Yohan Dubois, Jeremy Blaizot, Thibault Garel, Roland Bacon, Julien Devriendt, Bruno Guiderdoni, Adrianne Slyz

Abstract:

[abridged] Aims. The aim of this paper is to assess the impact of the interstellar medium (ISM) physics on Lyman-alpha (Lya) radiation transfer and to quantify how galaxy orientation with respect to the line of sight alters observational signatures. Methods. We compare the results of Lya radiation transfer calculations through the ISM of a couple of idealized galaxy simulations with different ISM models. Results. First, the small-scale structuration of the ISM plays a determinant role in shaping a galaxys Lya properties.The artificially warm, and hence smooth, ISM of G1 yields an escape fraction of 50 percent at the Lya line center, and produces symmetrical double-peak profiles. On the contrary, in G2, most young stars are embedded in thick star-forming clouds, and the result is a 10 times lower escape fraction. G2 also displays a stronger outflowing velocity field, which favors the escape of red-shifted photons, resulting in an asymmetric Lya line. Second, the Lya properties of G2 strongly depend on the inclination at which it is observed: From edge-on to face-on, the line goes from a double-peak profile with an equivalent width of -5 Angstrom to a 15 times more luminous red-shifted asymmetric line with EW 90 Angstrom. Conclusions. Lya radiation transfer calculations can only lead to realistic properties in simulations where galaxies are resolved into giant molecular clouds, putting these calculations out of reach of current large scale cosmological simulations. Finally, we find inclination effects to be much stronger for Lya photons than for continuum radiation. This could potentially introduce severe biases in the selection function of narrow-band Lya emitter surveys, which could indeed miss a significant fraction of the high-z galaxy population.

Lyman-alpha emission properties of simulated galaxies: interstellar medium structure and inclination effects

(2012)

Authors:

Anne Verhamme, Yohan Dubois, Jeremy Blaizot, Thibault Garel, Roland Bacon, Julien Devriendt, Bruno Guiderdoni, Adrianne Slyz

The Milky Way Project First Data Release: A bubblier Galactic disc

Monthly Notices of the Royal Astronomical Society 424:4 (2012) 2442-2460

Authors:

RJ Simpson, MS Povich, S Kendrew, CJ Lintott, E Bressert, K Arvidsson, C Cyganowski, S Maddison, K Schawinski, R Sherman, AM Smith, G Wolf-Chase

Abstract:

We present a new catalogue of 5106 infrared bubbles created through visual classification via the online citizen science website 'The Milky Way Project'. Bubbles in the new catalogue have been independently measured by at least five individuals, producing consensus parameters for their position, radius, thickness, eccentricity and position angle. Citizen scientists - volunteers recruited online and taking part in this research - have independently rediscovered the locations of at least 86 percent of three widely used catalogues of bubbles and Hii regions whilst finding an order of magnitude more objects. 29 percent of the Milky Way Project catalogue bubbles lie on the rim of a larger bubble, or have smaller bubbles located within them, opening up the possibility of better statistical studies of triggered star formation. Also outlined is the creation of a 'heat map' of star formation activity in the Galactic plane. This online resource provides a crowd-sourced map of bubbles and arcs in the Milky Way, and will enable better statistical analysis of Galactic star formation sites. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Enhancing and inhibiting star formation: High-resolution simulation studies of the impact of cold accretion, mergers and feedback on individual massive galaxies

Proceedings of the International Astronomical Union 8:S295 (2012) 13-16

Authors:

LC Powell, F Bournaud, D Chapon, J Devriendt, V Gaibler, S Khochfar, A Slyz, R Teyssier

Abstract:

The quest for a better understanding of the evolution of massive galaxies can be broadly summarised with 2 questions: how did they build up their large (stellar) masses and what eventually quenched their star formation (SF)? To tackle these questions, we use high-resolution ramses simulations (Teyssier 2002) to study several aspects of the detailed interplay between accretion (mergers and cold flows), SF and feedback in individual galaxies. We examine SF in major mergers; a process crucial to stellar mass assembly. We explore whether the merger-induced, clustered SF is as important a mechanism in average mergers, as it is in extreme systems like the Antennae. We find that interaction-induced turbulence drives up the velocity dispersion, and that there is a correlated rise in SFR in all our simulated mergers as the density pdf evolves to have an excess of very dense gas. Next, we introduce a new study into whether mechanical jet feedback can impact upon the ability of hot gas haloes to provide a supply of fuel for SF during mergers and in their remnants. Finally, we briefly review our recent study, in which we examine the effect of supernova (SN) feedback on galaxies accreting via the previously overlooked cold-mode, by resimulating a stream-fed galaxy at z ~ 9. A far-reaching galactic wind results yet it cannot suppress the cold, filamentary accretion or eject significant mass in order to reduce the SFR, suggesting that SN feedback may not be as effective as is often assumed. © 2013 International Astronomical Union.