Skilful seasonal predictions of Summer European rainfall

Geophysical Research Letters American Geophysical Union 45:7 (2018) 3246-3254

Authors:

N Dunstone, D Smith, A Scaife, L Hermanson, D Fereday, C O'Reilly, A Stirling, R Eade, M Gordon, C Maclachlan, Tim Woollings, K Sheen, S Belcher

Abstract:

Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however current seasonal forecast systems show no significant forecast skill. Here we show skilful predictions are possible (r~0.5, p<0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g. wet summers 2007-2012) and some of the large individual events (e.g. dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapour into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general – although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses) very large ensembles (>80 members) are required for skilful predictions. This work is promising for the development of European summer rainfall climate services.

Report on the Joint SPARC Dynamics and Observations Work- shop: SATIO-TCS, FISAPS and QBOi, Kyoto, Japan

SPARC (2018) 19-25

Authors:

J Anstey, S Yoden, M Geller, Scott Osprey, Et al.

The Met Office Global Coupled model 3.0 and 3.1 (GC3.0 & GC3.1) configurations

Journal of Advances in Modeling Earth Systems Wiley 10:2 (2018) 357-380

Authors:

EW Blockley, R Comer, P Davis, T Graham, HT Hewitt, R Hill, R Hyder, S Ineson, TC Johns, RW Lee, A Megann, SF Milton, JGL Rae, MJ Roberts, AA Scaife, R Schiemann, D Storkey, L Thorpe, IG Watterson, RA Wood, Tim J Woollings, PK Xavier

Abstract:

The Global Coupled 3 (GC3) configuration of the Met Office Unified Model is presented. Amongst other applications, GC3 is the basis of the United Kingdom's submission to the Coupled Model Intercomparison Project 6 (CMIP6). This paper documents the model components that make up the configuration (although the scientific description of these components are in companion papers), and details the coupling between them. The performance of GC3 is assessed in terms of mean biases and variability in long climate simulations using present-day forcing. The suitability of the configuration for predictabiity on shorter timescales (weather and seasonal forecasting) is also briefly discussed. The performance of GC3 is compared against GC2, the previous Met Office coupled model configuration, and against an older configuration (HadGEM2-AO) which was the submission to CMIP5.


In many respects, the performance of GC3 is comparable with GC2, however there is a notable improvement in the Southern Ocean warm sea surface temperature bias which has been reduced by 75%, and there are improvements in cloud amount and some aspects of tropical variability. Relative to HadGEM2-AO, many aspects of the present-day climate are improved in GC3 including tropospheric and stratospheric temperature structure, most aspects of tropical and extra-tropical variability and top-of-atmosphere & surface fluxes. A number of outstanding errors are identified including a residual asymmetric sea surface temperature bias (cool northern hemisphere, warm Southern Ocean), an overly strong global hydrological cycle and insufficient European blocking.

Impact of Gulf Stream SST biases on the global atmospheric circulation

Climate Dynamics Springer Berlin Heidelberg 51:9-10 (2018) 3369-3387

Authors:

RW Lee, Tim Woollings, BJ Hoskins, KD Williams, Christopher O'Reilly, G Masato

Abstract:

The UK Met Office Unified Model in the Global Coupled 2 (GC2) configuration has a warm bias of up to almost 7K in the Gulf Stream SSTs in the winter season, which is associated with surface heat flux biases and potentially related to biases in the atmospheric circulation. The role of this SST bias is examined with a focus on the tropospheric response by performing three sensitivity experiments. The SST biases are imposed on the atmosphere-only configuration of the model over a small and medium section of the Gulf Stream, and also the wider North Atlantic. Here we show that the dynamical response to this anomalous Gulf Stream heating (and associated shifting and changing SST gradients) is to enhance vertical motion in the transient eddies over the Gulf Stream, rather than balance the heating with a linear dynamical meridional wind or meridional eddy heat transport. Together with the imposed Gulf Stream heating bias, the response affects the troposphere not only locally but also in remote regions of the Northern Hemisphere via a planetary Rossby wave response. The sensitivity experiments partially reproduce some of the differences in the coupled configuration of the model relative to the atmosphere-only configuration and to the ERA-Interim reanalysis. These biases may have implications for the ability of the model to respond correctly to variability or changes in the Gulf Stream. Better global prediction therefore requires particular focus on reducing any large western boundary current SST biases in these regions of high ocean-atmosphere interaction.

First successful hindcasts of the 2016 disruption of the stratospheric quasi-biennial oscillation

Geophysical Research Letters American Geophysical Union 45:3 (2018) 1602-1610

Authors:

S Watanabe, K Hamilton, Scott Osprey, Y Kawatani, E Nishimoto

Abstract:

In early 2016 the quasibiennial oscillation in tropical stratospheric winds was disrupted by an anomalous easterly jet centered at ~40 hPa, a development that was completely missed by all operational extended-range weather forecast systems. This event and its predictability are investigated through 40-day ensemble hindcasts using a global model notable for its sophisticated representation of the upper atmosphere. Integrations starting at different times throughout January 2016 - just before and during the initial development of the easterly jet - were performed. All integrations simulated the unusual developments in the stratospheric mean wind, despite considerable differences in other aspects of the flow evolution among the ensemble members, notably in the evolution of the winter polar vortex and the day-to-day variations in extratropical Rossby waves. Key to prediction of this event is simulating the slowly-evolving mean winds in the winter subtropics that provide a waveguide for Rossby waves propagating from the winter hemisphere.