Skilful seasonal predictions of Summer European rainfall
Abstract:
Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however current seasonal forecast systems show no significant forecast skill. Here we show skilful predictions are possible (r~0.5, p<0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g. wet summers 2007-2012) and some of the large individual events (e.g. dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapour into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general – although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses) very large ensembles (>80 members) are required for skilful predictions. This work is promising for the development of European summer rainfall climate services.Report on the Joint SPARC Dynamics and Observations Work- shop: SATIO-TCS, FISAPS and QBOi, Kyoto, Japan
The Met Office Global Coupled model 3.0 and 3.1 (GC3.0 & GC3.1) configurations
Abstract:
The Global Coupled 3 (GC3) configuration of the Met Office Unified Model is presented. Amongst other applications, GC3 is the basis of the United Kingdom's submission to the Coupled Model Intercomparison Project 6 (CMIP6). This paper documents the model components that make up the configuration (although the scientific description of these components are in companion papers), and details the coupling between them. The performance of GC3 is assessed in terms of mean biases and variability in long climate simulations using present-day forcing. The suitability of the configuration for predictabiity on shorter timescales (weather and seasonal forecasting) is also briefly discussed. The performance of GC3 is compared against GC2, the previous Met Office coupled model configuration, and against an older configuration (HadGEM2-AO) which was the submission to CMIP5.
In many respects, the performance of GC3 is comparable with GC2, however there is a notable improvement in the Southern Ocean warm sea surface temperature bias which has been reduced by 75%, and there are improvements in cloud amount and some aspects of tropical variability. Relative to HadGEM2-AO, many aspects of the present-day climate are improved in GC3 including tropospheric and stratospheric temperature structure, most aspects of tropical and extra-tropical variability and top-of-atmosphere & surface fluxes. A number of outstanding errors are identified including a residual asymmetric sea surface temperature bias (cool northern hemisphere, warm Southern Ocean), an overly strong global hydrological cycle and insufficient European blocking.