Blocking and its response to climate change

Current Climate Change Reports Springer 2018 (2018) 1-14

Authors:

Tim Woollings, David Barriopedro, John Methven, Seok-Woo Son, Olivia Martius, Ben Harvey, Jana Sillmann, Anthony R Lupo, Sonia Seneviratne

Abstract:

Purpose of Review Atmospheric blocking events represent some of the most high-impact weather patterns in the mid-latitudes, yet they have often been a cause for concern in future climate projections. There has been low confidence in predicted future changes in blocking, despite relatively good agreement between climate models on a decline in blocking. This is due to the lack of a comprehensive theory of blocking and a pervasive underestimation of blocking occurrence bymodels. This paper reviews the state of knowledge regarding blocking under climate change, with the aim of providing an overview for those working in related fields. Recent Findings Several avenues have been identified by which blocking can be improved in numerical models, though a fully reliable simulation remains elusive (at least, beyond a few days lead time). Models are therefore starting to provide some useful information on how blocking and its impacts may change in the future, although deeper understanding of the processes at play will be needed to increase confidence in model projections. There are still major uncertainties regarding the processes most important to the onset, maintenance and decay of blocking and advances in our understanding of atmospheric dynamics, for example in the role of diabatic processes, continue to inform the modelling and prediction efforts. Summary The term ‘blocking’ covers a diverse array of synoptic patterns, and hence a bewildering range of indices has been developed to identify events. Results are hence not considered fully trustworthy until they have been found using several different methods. Examples of such robust results are the underestimation of blocking by models, and an overall decline in future occurrence, albeit with a complex regional and seasonal variation. In contrast, hemispheric trends in blocking over the recent historical period are not supported by different methods, and natural variability will likely dominate regional variations over the next few decades.

Do CMIP5 models reproduce observed low-frequency North Atlantic jet variability?

Geophysical Research Letters John Wiley & Sons, Inc. 45:14 (2018) 7204-7212

Authors:

Tim Woollings, T Bracegirdle, H Lu, R Eade

Abstract:

The magnitude of observed multi-decadal variations in the North Atlantic Oscillation (NAO) is at the upper end of the range simulated by climate models and a clear explanation for this remains elusive. Recent research shows that observed multi-decadal NAO variability is more strongly associated with North Atlantic (NA) jet strength than latitude, thus motivating a comprehensive comparison of NA jet and NAO variability across the CMIP5 models. Our results show that the observed peak in multi-decadal jet strength variability is even more unusual than NAO variability when compared to the model-simulated range across 133 historical CMIP5 simulations. Some CMIP5 models appear capable of reproducing the observed low-frequency peak in jet strength, but there are too few simulations of each model to clearly identify which. It is also found that an observed strong multi-decadal correlation between jet strength and NAO since the mid-19th century may be specific to this period.

Meat consumption, health and the environment

Science American Association for the Advancement of Science 361:6399 (2018) 5324

Authors:

Charles Godfray, Paul Aveyard, Tara Garnett, Jim Hall, Timothy Key, Jamie Lorimer, Ray Pierrehumbert, Peter Scarborough, Marco Springmann, Susan Jebb

Abstract:

Both the global average per capita consumption of meat and the total amount of meat consumed are rising, driven by increasing average individual incomes and by population growth. The consumption of different types of meat and meat products has substantial effects on people’s health, and livestock production can have major negative effects on the environment. Here, we explore the evidence base for these assertions and the options policy-makers have should they wish to intervene to affect population meat consumption. We highlight where more research is required and the great importance of integrating insights from the natural and social sciences.

Preconditioning of Arctic Stratospheric Polar Vortex Shift Events

Journal of Climate American Meteorological Society 31:14 (2018) 5417-5436

Authors:

J Huang, W Tian, Lesley Gray, J Zhang, Y Li, J Luo, H Tian

Abstract:

This study examines the preconditioning of events in which the Arctic stratospheric polar vortex shifts toward Eurasia (EUR events), North America (NA events), and the Atlantic (ATL events) using composite analysis. An increase in blocking days over northern Europe and a decrease in blocking days over the Bering Strait favor the movement of the vortex toward Eurasia, while the opposite changes in blocking days over those regions favor the movement of the vortex toward North America. An increase in blocking days over the eastern North Atlantic and a decrease in blocking days over the Bering Strait are conducive to movement of the stratospheric polar vortex toward the Atlantic. These anomalous precursor blocking patterns are interpreted in terms of the anomalous zonal wave-1 or wave-2 planetary wave fluxes into the stratosphere that are known to influence the vortex position and strength. In addition, the polar vortex shift events are further classified into events with small and large polar vortex deformation, since the two types of events are likely to have a different impact at the surface. A significant difference in the zonal wave-2 heat flux into the lower stratosphere exists prior to the two types of events and this is linked to anomalous blocking patterns. This study further defines three types of tropospheric blocking events in which the spatial patterns of blocking frequency anomalies are similar to the blocking patterns prior to EUR, NA, and ATL events, respectively, and our reanalysis reveals that the polar vortex is indeed more likely to shift toward Eurasia, North America, and the Atlantic in the presence of the above three defined tropospheric blocking events. These shifts of the polar vortex toward Eurasia, North America, and the Atlantic lead to statistically significant negative height anomalies near the tropopause and corresponding surface cooling anomalies over these three regions.

Higher CO2 concentrations increase extreme event risk in a 1.5C world

Nature Climate Change Nature Publishing Group 8 (2018) 604-608

Authors:

Hugh S Baker, Richard J Millar, Allen, DJ Karoly, U Beyerle, Benoit P Guillod, D Mitchell, H Shiogama, Sarah N Sparrow, Tim Woollings, Myles R Allen

Abstract:

The Paris Agreement1 aims to ‘pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels.’ However, it has been suggested that temperature targets alone are unable to limit the risks associated with anthropogenic emissions2, 3. Here, using an ensemble of model simulations, we show that atmospheric CO2 increase - a more predictable consequence of emissions compared to global temperature increase - has a significant impact on Northern Hemisphere summer temperature, heat stress, and tropical precipitation extremes. Hence in an iterative climate mitigation regime aiming solely for a specific temperature goal, an unexpectedly low climate response may have corresponding ‘dangerous’ changes in extreme events. The direct impact of higher CO2 concentrations on climate extremes therefore substantially reduces the upper bound of the carbon budget, and highlights the need to explicitly limit atmospheric CO2 concentration when formulating allowable emissions. Thus, complementing global mean temperature goals with explicit limits on atmospheric CO2 concentrations in future climate policy would reduce the adverse effects of high-impact weather extremes.