The SuperCOSMOS all-sky galaxy catalogue

Monthly Notices of the Royal Astronomical Society Oxford University Press 462:2 (2016) 2085-2098

Authors:

JA Peacock, NC Hambly, M Bilicki, HT MacGillivray, Lance Miller, MA Read, SB Tritton

Abstract:

We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from theUKSchmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasiall- sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

CFHTLenS and RCSLenS cross-correlation with Planck lensing detected in fourier and configuration space

Monthly Notices of the Royal Astronomical Society 460:1 (2016) 434-457

Authors:

J Harnois-Déraps, T Tröster, A Hojjati, L van Waerbeke, M Asgari, A Choi, T Erben, C Heymans, H Hildebrandt, TD Kitching, L Miller, R Nakajima, M Viola, S Arnouts, J Coupon, T Moutard

GAMA/WiggleZ: The 1.4GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z=0.75

Monthly Notices of the Royal Astronomical Society Oxford University Press 460:1 (2016) 2-17

Authors:

Michael B Pracy, John HY Ching, Elaine M Sadler, Scott M Croom, IK Baldry, Joss Bland-Hawthorn, S Brough, MJI Brown, Warwick Couch, Tamara M Davis, Michael J Drinkwater, Matthew Jarvis, Ben Jelliffe, Russell J Jurek, J Loveday, KA Pimbblet, M Prescott, Emily Wisnioski, David Woods

Abstract:

We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey images. The radio AGN are separated into low-excitation radio galaxies (LERGs) and high-excitation radio galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z < 0.75). The radio luminosity functions can be well described by a double power law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as ∼(1+z)0.06+0.17−0.18 assuming pure density evolution or ∼(1+z)0.46+0.22−0.24 assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by ∼(1+z)2.93+0.46−0.47 assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed, the best-fitting HERG evolution is parametrized by ∼(1+z)7.41+0.79−1.33 . The characteristic break in the radio luminosity function occurs at a significantly higher power (≳1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes.

LOFAR/H-ATLAS: a deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field

Monthly Notices of the Royal Astronomical Society Oxford University Press 462:2 (2016) 1910-1936

Authors:

Martin J Hardcastle, Gulay Gürkan, Reinout J van Weeren, Wendy L Williams, Philip N Best, Francesco de Gasperin, David A Rafferty, Sean C Read, José Sabater Montes, Tim W Shimwell, Daniel JB Smith, Cyril Tasse, Nathan Bourne, Marissa Brienza, Marcus Brüggen, Gianfranco Brunetti, Krzysztof T Chyży, John Conway, Loretta Dunne, Steve A Eales, Steve J Maddox, Matthew Jarvis, Elizabeth K Mahony, Raffaella Morganti, Isabella Prandoni, Huub JA Röttgering, Elisabetta Valiante, Glenn J White

Abstract:

We present Low-Frequency Array (LOFAR) High-Band Array observations of the Herschel-ATLAS North Galactic Pole survey area. The survey we have carried out, consisting of four pointings covering around 142 deg2 of sky in the frequency range 126–173 MHz, does not provide uniform noise coverage but otherwise is representative of the quality of data to be expected in the planned LOFAR wide-area surveys, and has been reduced using recently developed ‘facet calibration’ methods at a resolution approaching the full resolution of the data sets (∼10 × 6 arcsec) and an rms off-source noise that ranges from 100 μJy beam−1 in the centre of the best fields to around 2 mJy beam−1 at the furthest extent of our imaging. We describe the imaging, cataloguing and source identification processes, and present some initial science results based on a 5σ source catalogue. These include (i) an initial look at the radio/far-infrared correlation at 150 MHz, showing that many Herschel sources are not yet detected by LOFAR; (ii) number counts at 150 MHz, including, for the first time, observational constraints on the numbers of star-forming galaxies; (iii) the 150-MHz luminosity functions for active and star-forming galaxies, which agree well with determinations at higher frequencies at low redshift, and show strong redshift evolution of the star-forming population; and (iv) some discussion of the implications of our observations for studies of radio galaxy life cycles.

Bursty star formation feedback and cooling outflows

(2016)

Authors:

Teresita Suarez, Andrew Pontzen, Hiranya V Peiris, Adrianne Slyz, Julien Devriendt