DIVISION J COMMISSION 28: GALAXIES

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 11:T29A (2015) 525-530

Authors:

John S Gallagher, Roger L Davies, Stéphane Courteau, Avishai Dekel, Marijn Franx, Chanda J Jog, Sardha Jogee, Naomasa Nakai, Monica Rubio, Linda Tacconi, Elena Terlevich

Galaxy merger histories and the role of merging in driving star formation at z > 1

Monthly Notices of the Royal Astronomical Society Oxford University Press 452:3 (2015) 2845-2850

Authors:

S Kaviraj, Julien Devriendt, Y Dubois, Adrianne Slyz, C Welker, C Pichon, S Peirani, DL Borgne

Abstract:

We use Horizon-AGN, a hydrodynamical cosmological simulation, to explore the role of mergers in the evolution of massive (M* > 1010 M) galaxies around the epoch of peak cosmic star formation (1 < z < 4). The fraction of massive galaxies in major mergers (mass ratio R < 4: 1) is around 3 per cent, a factor of ∼2.5 lower than minor mergers (4: 1 < R < 10: 1) at these epochs, with no trend with redshift. At z ∼ 1, around a third of massive galaxies have undergone a major merger, while all remaining systems have undergone a minor merger. While almost all major mergers at z > 3 are ‘blue’ (i.e. have significant associated star formation), the proportion of ‘red’ mergers increases rapidly at z < 2, with most merging systems at z ∼ 1.5 producing remnants that are red in rest-frame UV–optical colours. The star formation enhancement during major mergers is mild (∼20–40 per cent) which, together with the low incidence of such events, implies that this process is not a significant driver of early stellar mass growth. Mergers (R < 10: 1) host around a quarter of the total star formation budget in this redshift range, with major mergers hosting around two-thirds of this contribution. Notwithstanding their central importance to the standard Λ cold dark matter paradigm, mergers are minority players in driving star formation at the epochs where the bulk of today's stellar mass was formed.

Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation

(2015)

Authors:

Nora Elisa Chisari, Sandrine Codis, Clotilde Laigle, Yohan Dubois, Christophe Pichon, Julien Devriendt, Adrianne Slyz, Lance Miller, Raphael Gavazzi, Karim Benabed

Contamination of early-type galaxy alignments to galaxy lensing-CMB lensing cross-correlation

Monthly Notices of the Royal Astronomical Society 453:1 (2015) 682-689

Authors:

NE Chisari, J Dunkley, L Miller, R Allison

Abstract:

Galaxy shapes are subject to distortions due to the tidal field of the Universe. The crosscorrelation of galaxy lensing with the lensing of the cosmic microwave background (CMB) cannot easily be separated from the cross-correlation of galaxy intrinsic shapes with CMB lensing. Previous work suggested that the intrinsic alignment contamination can be 15 per cent of this cross-spectrum for the CFHT Stripe 82 (CS82) and Atacama Cosmology Telescope surveys. Here we re-examine these estimates using up-to-date observational constraints of intrinsic alignments at a redshift more similar to that of CS82 galaxies. We find an ≈ 10 per cent contamination of the cross-spectrum from red galaxies, with ≈ 3 per cent uncertainty due to uncertainties in the redshift distribution of source galaxies and the modelling of the spectral energy distribution. Blue galaxies are consistent with being unaligned, but could contaminate the cross-spectrum by an additional 9.5 per cent within current 95 per cent confidence levels. While our fiducial estimate of alignment contamination is similar to previous work, our work suggests that the relevance of alignments for CMB lensing-galaxy lensing cross-correlation remains largely unconstrained. Little information is currently available about alignments at z > 1.2. We consider the upper limiting case where all z > 1.2 galaxies are aligned with the same strength as low-redshift luminous red galaxies, finding as much as ≈ 60 per cent contamination.

Counting quasar–radio source pairs to derive the millijansky radio luminosity function and clustering strength to z = 3.5

Monthly Notices of the Royal Astronomical Society Oxford University Press 452:3 (2015) 2692-2699

Authors:

S Fine, T Shanks, R Johnston, Matthew Jarvis, T Mauch

Abstract:

We apply a cross-correlation technique to infer the S > 3 mJy radio luminosity function (RLF) from the NRAO VLA Sky Survey (NVSS) to z ∼ 3.5. We measure Σ the over density of radio sources around spectroscopically confirmed quasars. Σ is related to the space density of radio sources at the distance of the quasars and the clustering strength between the two samples, hence knowledge of one constrains the other. Under simple assumptions we find Φ ∝ (1 + z)3.7 ± 0.7 out to z ∼ 2. Above this redshift the evolution slows and we constrain the evolution exponent to <1.01 (2σ). This behaviour is almost identical to that found by previous authors for the bright end of the RLF potentially indicating that we are looking at the same population. This suggests that the NVSS is dominated by a single population; most likely radio sources associated with high-excitation cold-mode accretion. Inversely, by adopting a previously modelled RLF we can constrain the clustering of high-redshift radio sources and find a clustering strength consistent with r0 = 15.0 ± 2.5 Mpc up to z ∼ 3.5. This is inconsistent with quasars at low redshift and some measurements of the clustering of bright FR II sources. This behaviour is more consistent with the clustering of lower luminosity radio galaxies in the local Universe. Our results indicate that the high-excitation systems dominating our sample are hosted in the most massive galaxies at all redshifts sampled.