Milking the spherical cow - on aspherical dynamics in spherical coordinates

Monthly Notices of the Royal Astronomical Society Oxford University Press 451:2 (2015) 1366-1379

Authors:

A Pontzen, JI Read, R Teyssier, F Governato, A Gualandris, N Roth, Julien Devriendt

Abstract:

Galaxies and the dark matter haloes that host them are not spherically symmetric, yet spherical symmetry is a helpful simplifying approximation for idealized calculations and analysis of observational data. The assumption leads to an exact conservation of angular momentum for every particle, making the dynamics unrealistic. But how much does that inaccuracy matter in practice for analyses of stellar distribution functions, collisionless relaxation, or dark matter core-creation? We provide a general answer to this question for a wide class of aspherical systems; specifically, we consider distribution functions that are 'maximally stable', i.e. that do not evolve at first order when external potentials (which arise from baryons, large-scale tidal fields or infalling substructure) are applied. We show that a spherically symmetric analysis of such systems gives rise to the false conclusion that the density of particles in phase space is ergodic (a function of energy alone). Using this idea we are able to demonstrate that: (a) observational analyses that falsely assume spherical symmetry are made more accurate by imposing a strong prior preference for near-isotropic velocity dispersions in the centre of spheroids; (b) numerical simulations that use an idealized spherically symmetric setup can yield misleading results and should be avoided where possible; and (c) triaxial dark matter haloes (formed in collisionless cosmological simulations) nearly attain our maximally stable limit, but their evolution freezes out before reaching it.

Angular momentum transfer to a Milky Way disc at high redshift

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 449:4 (2015) 4363-4379

Authors:

H Tillson, J Devriendt, A Slyz, L Miller, C Pichon

Cosmological constraints from Subaru weak lensing cluster counts

Publications of the Astronomical Society of Japan Oxford University Press (OUP) 67:3 (2015) 34

Authors:

Takashi Hamana, Junya Sakurai, Michitaro Koike, Lance Miller

Cosmology from a SKA HI intensity mapping survey

Sissa Medialab Srl (2015) 019

Authors:

Mario Santos, Phil Bull, David Alonso, Stefano Camera, Pedro Ferreira, Gianni Bernardi, Roy Maartens, Matteo Viel, Francisco Villaescusa-Navarro, Filipe Batoni Abdalla, Matt Jarvis, R Benton Metcalf, Alkistis Pourtsidou, Laura Wolz

Cosmology with SKA radio continuum surveys

Proceedings of Science Sissa Medialab srl (2015)

Authors:

Matthew Jarvis, David Bacon, Chris Blake, Michael L Brown, Sam N Lindsay, Alvise Raccanelli, Mario Santos, Dominik Schwarz

Abstract:

Radio continuum surveys have, in the past, been of restricted use in cosmology. Most studies have concentrated on cross-correlations with the cosmic microwave background to detect the integrated Sachs-Wolfe effect, due to the large sky areas that can be surveyed. As we move into the SKA era, radio continuum surveys will have sufficient source density and sky area to play a major role in cosmology on the largest scales. In this chapter we summarise the experiments that can be carried out with the SKA as it is built up through the coming decade. We show that the SKA can play a unique role in constraining the non-Gaussianity parameter to \sigma(f_NL) ~ 1, and provide a unique handle on the systematics that inhibit weak lensing surveys. The SKA will also provide the necessary data to test the isotropy of the Universe at redshifts of order unity and thus evaluate the robustness of the cosmological principle.Thus, SKA continuum surveys will turn radio observations into a central probe of cosmological research in the coming decades.