Black hole evolution: I. Supernova-regulated black hole growth

Monthly Notices of the Royal Astronomical Society Oxford University Press 452:2 (2015) 1502-1518

Authors:

Y Dubois, M Volonteri, J Silk, Julien Devriendt, Adrianne Slyz, R Teyssier

Abstract:

The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, but also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 10^12 Msun halo at z=2, which is the progenitor of al group of galaxies at z=0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z>3.5, efficient feedback from SNe forbids the formation of a settled disc as well as the accumulation of dense cold gas in the vicinity of the BH and starves the central compact object. As the galaxy and its halo accumulate mass, they become able to confine the nuclear inflows provided by major mergers and the BH grows at a sustained near-to-Eddington accretion rate. We argue that this mechanism should be ubiquitous amongst low-mass galaxies, corresponding to galaxies with a stellar mass below <10^9 Msun in our simulations.

$\textit{Herschel}$-ATLAS:The connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 452:4 (2015) 3776-3794

Authors:

Gulay Gurkan, Martin J Hardcastle, Matthew Jarvis, Daniel JB Smith, Nathan Bourne, Loretta Dunne, Steve Maddox, Rob J Ivison, Jacopo Fritz

Abstract:

We examine the relationship between star formation and AGN activity by constructing matched samples of local radio-loud and radio-quiet AGN in the HerschelATLAS fields. Radio-loud AGN are classified as high-excitation and low-excitation radio galaxies (HERGs, LERGs) using their emission lines and WISE 22-μm luminosity. AGN accretion and jet powers in these active galaxies are traced by [OIII] emission-line and radio luminosity, respectively. Star formation rates (SFRs) and specific star formation rates (SSFRs) were derived using Herschel 250-μm luminosity and stellar mass measurements from the SDSS MPA-JHU catalogue. In the past, star formation studies of AGN have mostly focused on high-redshift sources to observe the thermal dust emission that peaks in the far-infrared, which limited the samples to powerful objects. However, with Herschel we can expand this to low redshifts. Our stacking analyses show that SFRs and SSFRs of both radio-loud and radioquiet AGN increase with increasing AGN power but that radio-loud AGN tend to have lower SFR. Additionally, radio-quiet AGN are found to have approximately an order of magnitude higher SSFRs than radio-loud AGN for a given level of AGN power. The difference between the star formation properties of radio-loud and -quiet AGN is also seen in samples matched in stellar mass.

Euclid space mission: a cosmological challenge for the next 15 years

Proceedings of the International Astronomical Union Cambridge University Press 10:S306 (2015) 375-378

Authors:

Roberto Scaramella, Yannick Mellier, Jerome Amiaux, Carlo Burigana, C Sofia Carvalho, Jean-Charles Cuillandre, Antonio D Silva, Joao Dinis, Adriano Derosa, Elena Maiorano, Paolo Franzetti, Bianca Garilli, Michele Maris, Massimo Meneghetti, Ismael Tereno, Stefanie Wachter, Luca Amendola, Mark Cropper, Vincenzo Cardone, Robert Massey, Sami Niemi, Henk Hoekstra, Thomas Kitching, Lance Miller, Timothy Schrabback, Elisabetta Semboloni, Andrew Taylor, Massimo Viola, Thierry Maciaszek, Anne Ealet, Luigi Guzzo, Knud Jahnke, Will Percival, Fabio Pasian, Marc Sauvage

Abstract:

Euclid is the next ESA mission devoted to cosmology. It aims at observing most of the extragalactic sky, studying both gravitational lensing and clustering over $\sim$15,000 square degrees. The mission is expected to be launched in year 2020 and to last six years. The sheer amount of data of different kinds, the variety of (un)known systematic effects and the complexity of measures require efforts both in sophisticated simulations and techniques of data analysis. We review the mission main characteristics, some aspects of the the survey and highlight some of the areas of interest to this meeting

GREAT3 results – I. Systematic errors in shear estimation and the impact of real galaxy morphology

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 450:3 (2015) 2963-3007

Authors:

Rachel Mandelbaum, Barnaby Rowe, Robert Armstrong, Deborah Bard, Emmanuel Bertin, James Bosch, Dominique Boutigny, Frederic Courbin, William A Dawson, Annamaria Donnarumma, Ian Fenech Conti, Raphaël Gavazzi, Marc Gentile, Mandeep SS Gill, David W Hogg, Eric M Huff, M James Jee, Tomasz Kacprzak, Martin Kilbinger, Thibault Kuntzer, Dustin Lang, Wentao Luo, Marisa C March, Philip J Marshall, Joshua E Meyers, Lance Miller, Hironao Miyatake, Reiko Nakajima, Fred Maurice Ngolé Mboula, Guldariya Nurbaeva, Yuki Okura, Stéphane Paulin-Henriksson, Jason Rhodes, Michael D Schneider, Huanyuan Shan, Erin S Sheldon, Melanie Simet, Jean-Luc Starck, Florent Sureau, Malte Tewes, Kristian Zarb Adami, Jun Zhang, Joe Zuntz

nIFTy cosmology: comparison of galaxy formation models

Monthly Notices of the Royal Astronomical Society Oxford University Press 451:4 (2015) 4029-4059

Authors:

A Knebe, FR Pearce, PA Thomas, A Benson, J Blaizot, R Bower, J Carretero, FJ Castander, A Cattaneo, Cora, DJ Croton, W Cui, D Cunnama, GD Lucia, Julien Devriendt, PJ Elahi, A Font, F Fontanot, J Garcia-Bellido, ID Gargiulo, V Gonzalez-Perez, J Helly, B Henriques, M Hirschmann, J Lee

Abstract:

We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo-occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to- halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the `nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investigate a common approach to model calibration. This paper provides a unified description for all participating models and presents the initial, uncalibrated comparison as a baseline for our future studies where we will develop a common calibration framework and address the extent to which that reduces the scatter in the model predictions seen here.