Revealing the location and structure of the accretion disk wind in PDS 456

Astrophysical Journal 784:1 (2014)

Authors:

J Gofford, JN Reeves, V Braito, E Nardini, MT Costa, GA Matzeu, P O'Brien, M Ward, TJ Turner, L Miller

Abstract:

We present evidence for the rapid variability of the high-velocity iron K-shell absorption in the nearby (z = 0.184) quasar PDS 456. From a recent long Suzaku observation in 2013 (1 Ms effective duration), we find that the equivalent width of iron K absorption increases by a factor of 5 during the observation, increasing from <105 eV within the first 100 ks of the observation, toward a maximum depth of 500 eV near the end. The implied outflow velocity of 0.25 c is consistent with that claimed from earlier (2007, 2011) Suzaku observations. The absorption varies on timescales as short as 1 week. We show that this variability can be equally well attributed to either (1) an increase in column density, plausibly associated with a clumpy time-variable outflow, or (2) the decreasing ionization of a smooth homogeneous outflow which is in photo-ionization equilibrium with the local photon field. The variability allows a direct measure of absorber location, which is constrained to within r = 200-3500 r g of the black hole. Even in the most conservative case, the kinetic power of the outflow is ≳ 6% of the Eddington luminosity, with a mass outflow rate in excess of 40% of the Eddington accretion rate. The wind momentum rate is directly equivalent to the Eddington momentum rate which suggests that the flow may have been accelerated by continuum scattering during an episode of Eddington-limited accretion. © 2014. The American Astronomical Society. All rights reserved..

Mergers drive spin swings along the cosmic web

(2014)

Authors:

Charlotte Welker, Julien Devriendt, Yohan Dubois, Christophe Pichon, Sébastien Peirani

The C-Band All-Sky Survey (C-BASS): design and implementation of the northern receiver

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 438:3 (2014) 2426-2439

Authors:

OG King, Michael E Jones, EJ Blackhurst, C Copley, RJ Davis, C Dickinson, CM Holler, MO Irfan, JJ John, JP Leahy, J Leech, SJC Muchovej, TJ Pearson, MA Stevenson, Angela C Taylor

Dancing in the dark: galactic properties trace spin swings along the cosmic web

ArXiv 1402.1165 (2014)

Authors:

Yohan Dubois, Christophe Pichon, Charlotte Welker, Damien Le Borgne, Julien Devriendt, Clotilde Laigle, Sandrine Codis, Dmitry Pogosyan, Stéphane Arnouts, Karim Benabed, Emmanuel Bertin, Jeremy Blaizot, François Bouchet, Jean-François Cardoso, Stéphane Colombi, Valérie de Lapparent, Vincent Desjacques, Raphaël Gavazzi, Susan Kassin, Taysun Kimm, Henry McCracken, Bruno Milliard, Sébastien Peirani, Simon Prunet, Stéphane Rouberol, Joseph Silk, Adrianne Slyz, Thierry Sousbie, Romain Teyssier, Laurence Tresse, Marie Treyer, Didier Vibert, Marta Volonteri

Abstract:

A large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate the alignment between the spin of galaxies and the cosmic filaments above redshift 1.2. The analysis of more than 150 000 galaxies per time step in the redshift range 1.2

Dancing in the dark: galactic properties trace spin swings along the cosmic web

(2014)

Authors:

Yohan Dubois, Christophe Pichon, Charlotte Welker, Damien Le Borgne, Julien Devriendt, Clotilde Laigle, Sandrine Codis, Dmitry Pogosyan, Stéphane Arnouts, Karim Benabed, Emmanuel Bertin, Jeremy Blaizot, François Bouchet, Jean-François Cardoso, Stéphane Colombi, Valérie de Lapparent, Vincent Desjacques, Raphaël Gavazzi, Susan Kassin, Taysun Kimm, Henry McCracken, Bruno Milliard, Sébastien Peirani, Simon Prunet, Stéphane Rouberol, Joseph Silk, Adrianne Slyz, Thierry Sousbie, Romain Teyssier, Laurence Tresse, Marie Treyer, Didier Vibert, Marta Volonteri