CFHTLenS: The relation between galaxy dark matter haloes and baryons from weak gravitational lensing
Monthly Notices of the Royal Astronomical Society 437:3 (2014) 2111-2136
Abstract:
We present a study of the relation between dark matter halo mass and the baryonic content of their host galaxies, quantified through galaxy luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensing and photometric data, obtained from the CFHT Legacy Survey. To interpret the weak lensing signal around our galaxies, we employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4, split into a red and a blue sample. We express the relationship between dark matter halo mass and baryonic observable as a power lawwith pivot points of 1011 h -270 L and 2 × 1011 h -270 M for luminosity and stellar mass, respectively. For the luminosity-halo mass relation, we find a slope of 1.32 ± 0.06 and a normalization of 1.19+0.06 -0.07 × 1013 h -170 M for red galaxies, while for blue galaxies the best-fitting slope is 1.09+0.20-0.13 and the normalization is 0.18+0.04 -0.05 × 1013 h -170 M. Similarly, we find a best-fitting slope of 1.36+0.06-0.07 and a normalization of 1.43+0.11-0.08 × 1013 h -170 M for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98+0.08-0.07 and 0.84+0.20-0.16 × 1013 h -170 M. All numbers convey the 68 per cent confidence limit. For red lenses, the fraction which are satellites inside a larger halo tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2 × 109 h -270 M. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy-galaxy lensing that blue galaxies reside in less clustered environments than red galaxies.We also find that the halo model, while matching the lensing signal around red lenses well, is prone to overpredicting the large-scale signal for faint and less massive blue lenses. This could be a further indication that these galaxies tend to be more isolated than assumed. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Cosmology with a SKA HI intensity mapping survey
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
HI intensity mapping (IM) is a novel technique capable of mapping the large-scale structure of the Universe in three dimensions and delivering exquisite constraints on cosmology, by using HI as a biased tracer of the dark matter density field. This is achieved by measuring the intensity of the redshifted 21cm line over the sky in a range of redshifts without the requirement to resolve individual galaxies. In this chapter, we investigate the potential of SKA1 to deliver HI intensity maps over a broad range of frequencies and a substantial fraction of the sky. By pinning down the baryon acoustic oscillation and redshift space distortion features in the matter power spectrum - Thus determining the expansion and growth history of the Universe - These surveys can provide powerful tests of dark energy models and modifications to General Relativity. They can also be used to probe physics on extremely large scales, where precise measurements of spatial curvature and primordial non-Gaussianity can be used to test inflation; on small scales, by measuring the sum of neutrino masses; and at high redshifts where non-standard evolution models can be probed. We discuss the impact of foregrounds as well as various instrumental and survey design parameters on the achievable constraints. In particular we analyse the feasibility of using the SKA1 autocorrelations to probe the large-scale signal.Exploring AGN Activity over cosmic time with the SKA
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
In this Chapter we present the motivation for undertaking both a wide and deep survey with the SKA in the context of studying AGN activity across cosmic time. With an rms down to 1 μJy/beam at 1 GHz over 1,000 - 5,000 deg2 in 1 year (wide tier band 1/2) and an rms down to 200 nJy/beam over 10 - 30 deg2 in 2000 hours (deep tier band 1/2), these surveys will directly detect faint radio-loud and radio-quiet AGN (down to a 1 GHz radio luminosity of about 2×1023 W/Hz at z = 6). For the first time, this will enable us to conduct detailed studies of the cosmic evolution of radio AGN activity to the cosmic dawn (z ≳ 6), covering all environmental densities.How typical is the Coma cluster?
Monthly Notices of the Royal Astronomical Society 438:4 (2014) 3049-3057
Abstract:
Coma is frequently used as the archetype z ∼ 0 galaxy cluster to compare higher redshift work against. It is not clear, however, how representative the Coma cluster is for galaxy clusters of its mass or X-ray luminosity, and significantly, recent works have suggested that the galaxy population of Coma may be in some ways anomalous. In this work, we present a comparison of Coma to an X-ray-selected control sample of clusters. We show that although Coma is typical against the control sample in terms of its internal kinematics (sub-structure and velocity dispersion profile), it has a significantly high (∼3σ) X-ray temperature set against clusters of comparable mass. By de-redshifting our control sample cluster galaxies star formation rates using a fit to the galaxy main-sequence evolution at z < 0.1, we determine that the typical star formation rate of Coma galaxies as a function of mass is higher than for galaxies in our control sample at a confidence level of >99 per cent. One way to alleviate this discrepancy and bring Coma in line with the control sample would be to have the distance to Coma to be slightly lower, perhaps through a non-negligible peculiar velocity with respect to the Hubble expansion, but we do not regard this as likely given precision measurements using a variety of approaches. Therefore, in summary, we urge caution in using Coma as a z ∼ 0 baseline cluster in galaxy evolution studies. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.Morphological classification of radio sources for galaxy evolution and cosmology with the SKA
Proceedings of Science 9-13-June-2014 (2014)