The opto-mechanical design of HARMONI: A first light integral field spectrograph for the E-ELT

Proceedings of SPIE - The International Society for Optical Engineering 8446 (2012)

Authors:

NA Thatte, M Tecza, D Freeman, AM Gallie, D Montgomery, F Clarke, AB Fragoso-Lopez, J Fuentes, F Gago, A Garcia, F Gracia, J Kosmalski, J Lynn, D Sosa, S Arribas, R Bacon, RL Davies, T Fusco, D Lunney, E Mediavilla, A Remillieux, H Schnetler

Abstract:

HARMONI is a visible and near-IR integral field spectrograph, providing the E-ELT's spectroscopic capability at first light. It obtains simultaneous spectra of 32000 spaxels, at a range of resolving powers from R∼4000 to R∼20000, covering the wavelength range from 0.47 to 2.45 ìm. The 256 ? 128 spaxel field of view has four different plate scales, with the coarsest scale (40 mas) providing a 5? ? 10? FoV, while the finest scale is a factor of 10 finer (4mas). We describe the opto-mechanical design of HARMONI, prior to the start of preliminary design, including the main subsystems - namely the image de-rotator, the scale-changing optics, the splitting and slicing optics, and the spectrographs. We also present the secondary guiding system, the pupil imaging optics, the field and pupil stops, the natural guide star wavefront sensor, and the calibration unit. © 2012 SPIE.

No Evidence for Lyman-alpha Emission in Spectroscopy of z \gt 7 Candidate Galaxies

Monthly Notices of the Royal Astronomical Society Wiley 427:4 (2012) 3055-3070

Authors:

J Caruana, AJ Bunker, SM Wilkins, ER Stanway, M Lacy, MJ Jarvis, S Lorenzoni, S Hickey

An exponential decline at the bright end of the z=6 galaxy luminosity function

The Astronomical Journal 145 (2012) 4

Authors:

CJ Willott, RJ McLure, P Hibon, R Bielby, HJ McCracken, J-P Kneib, O Ilbert, DG Bonfield, VA Bruce, MJ Jarvis

CFHTLenS: The Canada-France-Hawaii Telescope Lensing Survey

Monthly Notices of the Royal Astronomical Society 427:1 (2012) 146-166

Authors:

C Heymans, L Van Waerbeke, L Miller, T Erben, H Hildebrandt, H Hoekstra, TD Kitching, Y Mellier, P Simon, C Bonnett, J Coupon, L Fu, J Harnois-Déraps, MJ Hudson, M Kilbinger, K Kuijken, B Rowe, T Schrabback, E Semboloni, E van Uitert, S Vafaei, M Velander

Abstract:

We present the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) that accurately determines a weak gravitational lensing signal from the full 154 deg2 of deep multicolour data obtained by the CFHT Legacy Survey. Weak gravitational lensing by large-scale structure is widely recognized as one of the most powerful but technically challenging probes of cosmology. We outline the CFHTLenS analysis pipeline, describing how and why every step of the chain from the raw pixel data to the lensing shear and photometric redshift measurement has been revised and improved compared to previous analyses of a subset of the same data. We present a novel method to identify data which contributes a non-negligible contamination to our sample and quantify the required level of calibration for the survey. Through a series of cosmology-insensitive tests we demonstrate the robustness of the resulting cosmic shear signal, presenting a science-ready shear and photometric redshift catalogue for future exploitation. © 2012 The Authors Monthly Notices of the Royal Astronomical Society. © 2012 RAS.

Direct measurement of the X-ray time-delay transfer function in active galactic nuclei

Astrophysical Journal 760:1 (2012)

Authors:

E Legg, L Miller, TJ Turner, M Giustini, JN Reeves, SB Kraemer

Abstract:

The origin of the observed time lags, in nearby active galactic nuclei (AGNs), between hard and soft X-ray photons is investigated using new XMM-Newton data for the narrow-line SeyfertI galaxy Ark 564 and existing data for 1H0707-495 and NGC4051. These AGNs have highly variable X-ray light curves that contain frequent, high peaks of emission. The averaged light curve of the peaks is directly measured from the time series, and it is shown that (1) peaks occur at the same time, within the measurement uncertainties, at all X-ray energies, and (2) there exists a substantial tail of excess emission at hard X-ray energies, which is delayed with respect to the time of the main peak, and is particularly prominent in Ark 564. Observation (1) rules out that the observed lags are caused by Comptonization time delays and disfavors a simple model of propagating fluctuations on the accretion disk. Observation (2) is consistent with time lags caused by Compton-scattering reverberation from material a few thousand light-seconds from the primary X-ray source. The power spectral density and the frequency-dependent phase lags of the peak light curves are consistent with those of the full time series. There is evidence for non-stationarity in the Ark 564 time series in both the Fourier and peaks analyses. A sharp "negative" lag (variations at hard photon energies lead soft photon energies) observed in Ark 564 appears to be generated by the shape of the hard-band transfer function and does not arise from soft-band reflection of X-rays. These results reinforce the evidence for the existence of X-ray reverberation in typeI AGN, which requires that these AGNs are significantly affected by scattering from circumnuclear material a few tens or hundreds of gravitational radii in extent. © 2012. The American Astronomical Society. All rights reserved.