Astronomy below the survey threshold in the SKA era
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
Astronomy at or below the survey threshold has expanded significantly since the publication of the original Science with the Square Kilometer Array in 1999 and its update in 2004. The techniques in this regime may be broadly (but far from exclusively) defined as confusion or P(D) analyses (analyses of one-point statistics), and stacking, accounting for the flux-density distribution of noise-limited images co-added at the positions of objects detected/isolated in a different waveband. Here we discuss the relevant issues, present some examples of recent analyses, and consider some of the consequences for the design and use of surveys with the SKA and its pathfinders.Beyond stacking: A maximum-likelihood method to constrain radio source counts below the detection threshold
Monthly Notices of the Royal Astronomical Society 437:3 (2014) 2270-2278
Abstract:
We present a statistical method based on a maximum-likelihood approach to constrain the number counts of extragalactic sources below the nominal flux-density limit of continuum imaging surveys. We extract flux densities from a radio map using positional information from an auxiliary catalogue and show that we can model the number counts of this undetected population down to flux-density levels well below the detection threshold of the radio survey. We demonstrate the capabilities that our method will have with future generation wide-area radio surveys by performing simulations over various sky areas. We show that it is possible to accurately constrain the number counts of the simulated distribution down to one-tenth of the flux noise rms with just a sky area of 100 deg2.We then test the application of our method using data from the Faint Images of the Radio Sky at Twenty-Centimetres survey (FIRST). We extract flux densities from the FIRST map, sensitive to 150 μJy beam-1 (1 σ), using the positional information from a catalogue in the same field, also acquired at the same frequency, sensitive to 12 μJy beam-1 (1 σ). Implementing our method, with known source positions, we are able to recover the right differential number counts of the noise-dominated FIRST map fluxes down to a flux-density level which is one-tenth the FIRST detection threshold. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.CFHTLenS: Cosmological constraints from a combination of cosmic shear two-point and three-point correlations
Monthly Notices of the Royal Astronomical Society 441:3 (2014) 2725-2743
Abstract:
Higher order, non-Gaussian aspects of the large-scale structure carry valuable information on structure formation and cosmology, which is complementary to second-order statistics. In this work, we measure second- and third-order weak-lensing aperture-mass moments from the Canada-France-Hawaii Lensing Survey (CFHTLenS) and combine those with cosmic microwave background (CMB) anisotropy probes. The third moment is measured with a significance of 2σ. The combined constraint on Σ8 = σ8(Ωm/0.27)α is improved by 10 per cent, in comparison to the second-order only, and the allowed ranges for Ωm and σ8 are substantially reduced. Including general triangles of the lensing bispectrum yields tighter constraints compared to probing mainly equilateral triangles. Second- and third-order CFHTLenS lensing measurements improve Planck CMB constraints on Ωm and σ8 by 26 per cent for flat Λ cold dark matter. For a model with free curvature, the joint CFHTLenS-Planck result is Ωm = 0.28 ± 0.02 (68 per cent confidence), which is an improvement of 43 per cent compared to Planck alone. We test how our results are potentially subject to three astrophysical sources of contamination: source-lens clustering, the intrinsic alignment of galaxy shapes, and baryonic effects. We explore future limitations of the cosmological use of third-order weak lensing, such as the non-linear model and the Gaussianity of the likelihood function. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.CFHTLenS: The relation between galaxy dark matter haloes and baryons from weak gravitational lensing
Monthly Notices of the Royal Astronomical Society 437:3 (2014) 2111-2136
Abstract:
We present a study of the relation between dark matter halo mass and the baryonic content of their host galaxies, quantified through galaxy luminosity and stellar mass. Our investigation uses 154 deg2 of Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) lensing and photometric data, obtained from the CFHT Legacy Survey. To interpret the weak lensing signal around our galaxies, we employ a galaxy-galaxy lensing halo model which allows us to constrain the halo mass and the satellite fraction. Our analysis is limited to lenses at redshifts between 0.2 and 0.4, split into a red and a blue sample. We express the relationship between dark matter halo mass and baryonic observable as a power lawwith pivot points of 1011 h -270 L and 2 × 1011 h -270 M for luminosity and stellar mass, respectively. For the luminosity-halo mass relation, we find a slope of 1.32 ± 0.06 and a normalization of 1.19+0.06 -0.07 × 1013 h -170 M for red galaxies, while for blue galaxies the best-fitting slope is 1.09+0.20-0.13 and the normalization is 0.18+0.04 -0.05 × 1013 h -170 M. Similarly, we find a best-fitting slope of 1.36+0.06-0.07 and a normalization of 1.43+0.11-0.08 × 1013 h -170 M for the stellar mass-halo mass relation of red galaxies, while for blue galaxies the corresponding values are 0.98+0.08-0.07 and 0.84+0.20-0.16 × 1013 h -170 M. All numbers convey the 68 per cent confidence limit. For red lenses, the fraction which are satellites inside a larger halo tends to decrease with luminosity and stellar mass, with the sample being nearly all satellites for a stellar mass of 2 × 109 h -270 M. The satellite fractions are generally close to zero for blue lenses, irrespective of luminosity or stellar mass. This, together with the shallower relation between halo mass and baryonic tracer, is a direct confirmation from galaxy-galaxy lensing that blue galaxies reside in less clustered environments than red galaxies.We also find that the halo model, while matching the lensing signal around red lenses well, is prone to overpredicting the large-scale signal for faint and less massive blue lenses. This could be a further indication that these galaxies tend to be more isolated than assumed. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Cosmology with a SKA HI intensity mapping survey
Proceedings of Science 9-13-June-2014 (2014)