The cosmic dawn and epoch of reionization with the square kilometre array
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
Concerted effort is currently ongoing to open up the Epoch of Reionization (z ∼15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-a emitters, quasars and drop-outs) in this redshift regime in relatively small fields of view, no direct detection of neutral hydrogen, via the redshifted 21-cm line, has yet been established. Such a direct detection is expected in the coming years, with ongoing surveys, and could open up the entire universe from z ∼6-200 for astrophysical and cosmological studies, opening not only the Epoch of Reionization, but also its preceding Cosmic Dawn (z ∼30-15) and possibly even the later phases of the Dark Ages (z ∼200-30). All currently ongoing experiments attempt statistical detections of the 21-cm signal during the Epoch of Reionization, with limited signal-to-noise. Direct imaging, except maybe on the largest (degree) scales at lower redshifts, as well as higher redshifts will remain out of reach. The Square Kilometre Array (SKA) will revolutionize the field, allowing direct imaging of neutral hydrogen from scales of arc-minutes to degrees over most of the redshift range z ∼6-28 with SKA1-LOW, and possibly even higher redshifts with the SKA2-LOW. In this SKA will be unique, and in parallel provide enormous potential of synergy with other upcoming facilities (e.g. JWST). In this chapter we summarize the physics of 21-cm emission, the different phases the universe is thought to go through, and the observables that the SKA can probe, referring where needed to detailed chapters in this volume. This is done within the framework of the current SKA1 baseline design and a nominal CD/EoR straw-man survey, consisting of a shallow, medium-deep and deep survey, the latter probing down to ∼1mK brightness temperature on arc-minute scales at the end of reionization. Possible minor modifications to the design of SKA1 and the upgrade to SKA2 are discussed, in addition to science that could be done already during roll-out when SKA1 still has limited capabilities and/or core collecting area.Unravelling lifecycles & physics of radio-loud AGN in the SKA era
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
Radio-loud AGN (> 1022 W Hz-1 at 1.4 GHz) will be the dominant bright source population detected with the SKA. The high resolution that the SKA will provide even in wide-area surveys will mean that, for the first time sensitive, multi-frequency total intensity and polarisation imaging of large samples of radio-loud active galactic nuclei (AGN) will become available. The unprecedented sensitivity of the SKA coupled with its wide field of view capabilities will allow identification of objects of the same morphological type (i.e. the entire FR I, low- and high luminosity FR II, disturbed morphology as well as weak radio-emitting AGN populations) up to high redshifts (z ∼ 4 and beyond), and at the same stage of their lives, from the youngest CSS/GPS sources to giant and fading (dying) sources, through to those with restarted activity radio galaxies and quasars. Critically, the wide frequency coverage of the SKA will permit analysis of same-epoch rest-frame radio properties, and the sensitivity and resolution will allow full cross- identification with multi-waveband data, further revealing insights into the physical processes driving the evolution of these radio sources. In this chapter of the SKA Science Book we give a summary of the main science drivers in the studies of lifecycles and detailed physics of radio-loud AGN, which include radio and kinetic luminosity functions, AGN feedback, radio-AGN triggering, radio-loud AGN unification and cosmological studies. We discuss the best parameters for the proposed SKA continuum surveys, both all-sky and deep field, in the light of these studies.Variability of the high-velocity outflow in the quasar PDS 456
Astrophysical Journal 780:1 (2014)
Abstract:
We present a comparison of two Suzaku X-ray observations of the nearby (z = 0.184), luminous (L bol∼ 1047 erg s-1) type I quasar, PDS 456. A new 125 ks Suzaku observation in 2011 caught the quasar during a period of low X-ray flux and with a hard X-ray spectrum, in contrast with a previous 190 ks Suzaku observation in 2007 when the quasar appeared brighter and had a steep (Γ > 2) X-ray spectrum. The 2011 X-ray spectrum contains a pronounced trough near 9 keV in the quasar rest frame, which can be modeled with blueshifted iron K-shell absorption, most likely from the He- and H-like transitions of iron. The absorption trough is observed at a similar rest-frame energy as in the earlier 2007 observation, which appears to confirm the existence of a persistent high-velocity wind in PDS 456, at an outflow velocity of 0.25-0.30c. The spectral variability between 2007 and 2011 can be accounted for by variations in a partial covering absorber, increasing in covering fraction from the brighter 2007 observation to the hard and faint 2011 observation. Overall, the low-flux 2011 observation can be explained if PDS 456 is observed at relatively low inclination angles through a Compton-thick wind, originating from the accretion disk, which significantly attenuates the X-ray flux from the quasar. © 2014. The American Astronomical Society. All rights reserved.Weak gravitational lensing with the Square Kilometre Array
Proceedings of Science 9-13-June-2014 (2014)
Abstract:
We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.Weak lensing simulations for the SKA
Proceedings of Science 9-13-June-2014 (2014)