A stable three-dimensional topological Dirac semimetal Cd3As2

Nature Materials Springer Nature 13:7 (2014) 677-681

Authors:

ZK Liu, J Jiang, B Zhou, ZJ Wang, Y Zhang, HM Weng, D Prabhakaran, S-K Mo, H Peng, P Dudin, T Kim, M Hoesch, Z Fang, X Dai, ZX Shen, DL Feng, Z Hussain, YL Chen

Molecular analysis of the CYP21A2 gene in Chinese patients with steroid 21-hydroxylase deficiency.

Clinical biochemistry 47:6 (2014) 455-463

Authors:

Dingyuan Ma, Yulin Chen, Yun Sun, Bing Yang, Jian Cheng, Meilian Huang, Jin Zhang, Jingjing Zhang, Ping Hu, Ying Lin, Tao Jiang, Zhengfeng Xu

Abstract:

Objective

21-Hydroxylase deficiency (21-OHD) is the most common cause of congenital adrenal hyperplasia (CAH), a family of autosomal recessive disorders involving impaired cortisol synthesis. This study aimed to design a reliable and rational approach for identifying mutations in the CYP21A2 gene and to characterize the molecular basis of 21-OHD in 30 Chinese patients.

Design and methods

Copy number variations were investigated by multiplex ligation-dependent probe amplification (MLPA). Locus-specific polymerase chain reaction (PCR)/restriction endonuclease analysis was then used to verify CYP21A2 rearrangement products and prevent allele dropout. Direct sequencing of rearrangement products was performed to further refine recombination breakpoint locations. Direct sequencing of the entire CYP21A2 gene was used to detect microconversions.

Results

We successfully characterized 60 CYP21A2 alleles from 30 patients with genetic defects. The most common one was intron 2 splice mutation (38.3%). Eighteen alleles with large gene deletions/conversions were identified, which accounted for nearly one-third (30.0%) of the genetic defects. Among these, three types of CYP21A1P/CYP21A2 chimeric genes (CH-1, CH-2, and CH-4) were characterized. Two novel CYP21A2 rearrangement genes were revealed and further demonstrated to be located downstream of the TNXB gene.

Conclusions

Our results indicate that the stepwise diagnostic procedure involving MLPA analysis, locus-specific PCR/restriction endonuclease analysis, and direct DNA sequencing can provide detailed genetic information about Chinese 21-OHD patients, which is helpful for characterizing structural rearrangements of CYP21A2.

Discovery of a three-dimensional topological Dirac semimetal, Na3Bi.

Science 343:6173 (2014) 864-867

Authors:

ZK Liu, B Zhou, Y Zhang, ZJ Wang, HM Weng, D Prabhakaran, S-K Mo, ZX Shen, Z Fang, X Dai, Z Hussain, YL Chen

Abstract:

Three-dimensional (3D) topological Dirac semimetals (TDSs) represent an unusual state of quantum matter that can be viewed as "3D graphene." In contrast to 2D Dirac fermions in graphene or on the surface of 3D topological insulators, TDSs possess 3D Dirac fermions in the bulk. By investigating the electronic structure of Na3Bi with angle-resolved photoemission spectroscopy, we detected 3D Dirac fermions with linear dispersions along all momentum directions. Furthermore, we demonstrated the robustness of 3D Dirac fermions in Na3Bi against in situ surface doping. Our results establish Na3Bi as a model system for 3D TDSs, which can serve as an ideal platform for the systematic study of quantum phase transitions between rich topological quantum states.

Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2.

Nat Nanotechnol 9:2 (2014) 111-115

Authors:

Yi Zhang, Tay-Rong Chang, Bo Zhou, Yong-Tao Cui, Hao Yan, Zhongkai Liu, Felix Schmitt, James Lee, Rob Moore, Yulin Chen, Hsin Lin, Horng-Tay Jeng, Sung-Kwan Mo, Zahid Hussain, Arun Bansil, Zhi-Xun Shen

Abstract:

Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a large enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te), which are closely related to the indirect-to-direct bandgap transition in monolayers. Here, we report the first direct observation of the transition from indirect to direct bandgap in monolayer samples by using angle-resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. The band structure measured experimentally indicates a stronger tendency of monolayer MoSe2 towards a direct bandgap, as well as a larger gap size, than theoretically predicted. Moreover, our finding of a significant spin-splitting of ∼ 180 meV at the valence band maximum of a monolayer MoSe2 film could expand its possible application to spintronic devices.

Study of Gd-doped Bi2Te3 thin films: Molecular beam epitaxy growth and magnetic properties

Journal of Applied Physics AIP Publishing 115:2 (2014) 023904

Authors:

SE Harrison, LJ Collins-McIntyre, S Li, AA Baker, LR Shelford, Y Huo, A Pushp, SSP Parkin, JS Harris, E Arenholz, G van der Laan, T Hesjedal