Colour and tropospheric cloud structure of Jupiter from MUSE/VLT: retrieving a universal chromophore

Icarus Elsevier 338:1 March 2020 (2020) 113589

Authors:

AS Braude, Patrick Irwin, GS Orton, LN Fletcher

Abstract:

Recent work by Sromovsky et al. (2017, Icarus 291, 232-244) suggested that all red colour in Jupiter’s atmosphere could be explained by a single colour-carrying compound, a so-called ‘universal chromophore’. We tested this hypothesis on ground-based spectroscopic observations in the visible and near-infrared (480- 930 nm) from the VLT/MUSE instrument between 2014 and 2018, retrieving a chromophore absorption spectrum directly from the North Equatorial Belt, and applying it to model spatial variations in colour, tropospheric cloud and haze structure on Jupiter. We found that we could model both the belts and the Great Red Spot of Jupiter using the same chromophore compound, but that this chromophore must exhibit a steeper blue-absorption gradient than the proposed chromophore of Carlson et al. (2016, Icarus 274, 106–115). We retrieved this chromophore to be located no deeper than 0.2±0.1 bars in the Great Red Spot and 0.7±0.1 bars elsewhere on Jupiter. However, we also identified some spectral variability between 510 nm and 540 nm that could not be accounted for by a universal chromophore. In addition, we retrieved a thick, global cloud layer at 1.4 ± 0.3 bars that was relatively spatially invariant in altitude across Jupiter. We found that this cloud layer was best characterised by a real refractive index close to that of ammonia ice in the belts and the Great Red Spot, and poorly characterised by a real refractive index of 1.6 or greater. This may be the result of ammonia cloud at higher altitude obscuring a deeper cloud layer of unknown composition.

Atmospheric dynamics of hot giant planets and brown dwarfs

Space Science Reviews Springer 216:8 (2020) 139

Authors:

Adam P Showman, Xianyu Tan, Vivien Parmentier

Abstract:

Groundbased and spacecraft telescopic observations, combined with an intensive modeling effort, have greatly enhanced our understanding of hot giant planets and brown dwarfs over the past ten years. Although these objects are all fluid, hydrogen worlds with stratified atmospheres overlying convective interiors, they exhibit an impressive diversity of atmospheric behavior. Hot Jupiters are strongly irradiated, and a wealth of observations constrain the day-night temperature differences, circulation, and cloudiness. The intense stellar irradiation, presumed tidal locking and modest rotation leads to a novel regime of strong day-night radiative forcing. Circulation models predict large day-night temperature differences, global-scale eddies, patchy clouds, and, in most cases, a fast eastward jet at the equator—equatorial superrotation. The warm Jupiters lie farther from their stars and are not generally tidally locked, so they may exhibit a wide range of rotation rates, obliquities, and orbital eccentricities, which, along with the weaker irradiation, leads to circulation patterns and observable signatures predicted to differ substantially from hot Jupiters. Brown dwarfs are typically isolated, rapidly rotating worlds; they radiate enormous energy fluxes into space and convect vigorously in their interiors. Their atmospheres exhibit patchiness in clouds and temperature on regional to global scales—the result of modulation by large-scale atmospheric circulation. Despite the lack of irradiation, such circulations can be driven by interaction of the interior convection with the overlying atmosphere, as well as self-organization of patchiness due to cloud-dynamical-radiative feedbacks. Finally, irradiated brown dwarfs help to bridge the gap between these classes of objects, experiencing intense external irradiation as well as vigorous interior convection. Collectively, these diverse objects span over six orders of magnitude in intrinsic heat flux and incident stellar flux, and two orders of magnitude in rotation rate—thereby placing strong constraints on how the circulation of giant planets (broadly defined) depend on these parameters. A hierarchy of modeling approaches have yielded major new insights into the dynamics governing these phenomena.

Color and aerosol changes in Jupiter after a North Temperate Belt disturbance

Icarus Elsevier BV 352 (2020) 114031

Authors:

S Pérez-Hoyos, A Sánchez-Lavega, Jf Sanz-Requena, N Barrado-Izagirre, O Carrión-González, A Anguiano-Arteaga, Pgj Irwin, As Braude

The role of ice lines in the formation of Uranus and Neptune.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 378:2187 (2020) ARTN 20200107

Authors:

O Mousis, A Aguichine, R Helled, Pgj Irwin, Ji Lunine

Abstract:

We aim at investigating whether the chemical composition of the outer region of the protosolar nebula can be consistent with current estimates of the elemental abundances in the ice giants. To do so, we use a self-consistent evolutionary disc and transport model to investigate the time and radial distributions of H<sub>2</sub>O, CO, CO<sub>2</sub>, CH<sub>3</sub>OH, CH<sub>4</sub>, N<sub>2</sub> and H<sub>2</sub>S, i.e. the main O-, C-, N and S-bearing volatiles in the outer disc. We show that it is impossible to accrete a mixture composed of gas and solids from the disc with a C/H ratio presenting enrichments comparable to the measurements (approx. 70 times protosolar). We also find that the C/N and C/S ratios measured in Uranus and Neptune are compatible with those acquired by building blocks agglomerated from solids condensed in the 10-20 arb. units region of the protosolar nebula. By contrast, the presence of protosolar C/N and C/S ratios in Uranus and Neptune would imply that their building blocks agglomerated from particles condensed at larger heliocentric distances. Our study outlines the importance of measuring the elemental abundances in the ice giant atmospheres, as they can be used to trace the planetary formation location, the origin of their building blocks and/or the chemical and physical conditions of the protosolar nebula. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

Latitudinal variation of methane mole fraction above clouds in Neptune's atmosphere from VLT/MUSE-NFM: limb-darkening reanalysis

Icarus Elsevier 357 (2020) 114277

Authors:

Patrick GJ Irwin, Jack Dobinson, Arjuna James, Daniel Toledo, Nicholas A Teanby, Leigh N Fletcher, Glenn S Orton, Santiago Pérez-Hoyos

Abstract:

We present a reanalysis of visible/near-infrared (480–930 nm) observations of Neptune, made in 2018 with the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope (VLT) in Narrow Field Adaptive Optics mode, reported by Irwin et al., Icarus, 311, 2019. We find that the inferred variation of methane abundance with latitude in our previous analysis, which was based on central meridian observations only, underestimated the retrieval errors when compared with a more complete assessment of Neptune's limb darkening. In addition, our previous analysis introduced spurious latitudinal variability of both the abundance and its uncertainty, which we reassess here. Our reanalysis of these data incorporates the effects of limb-darkening based upon the Minnaert approximation model, which provides a much stronger constraint on the cloud structure and methane mole fraction, makes better use of the available data and is also more computationally efficient. We find that away from discrete cloud features, the observed reflectivity spectrum from 800 to 900 nm is very well approximated by a background cloud model that is latitudinally varying, but zonally symmetric, consisting of a H2S cloud layer, based at 3.6–4.7 bar with variable opacity and scale height, and a stratospheric haze. The background cloud model matches the observed limb darkening seen at all wavelengths and latitudes and we find that the mole fraction of methane at 2–4 bar, above the H2S cloud, but below the methane condensation level, varies from 4–---6% at the equator to 2–4% at south polar latitudes, consistent with previous analyses, with a equator/pole ratio of 1.9 ± 0.2 for our assumed cloud/methane vertical distribution model. The spectra of discrete cloudy regions are fitted, to a very good approximation, by the addition of a single vertically thin methane ice cloud with opacity ranging from 0 to 0.75 and pressure less than ~0.4 bar.