Probable detection of hydrogen sulphide (H$_2$S) in Neptune's atmosphere
(2018)
Wave-mean flow interactions in the atmospheric circulation of tidally locked planets
Astrophysical Journal IOP Publishing 869:1 (2018)
Abstract:
We use a linear shallow-water model to investigate the global circulation of the atmospheres of tidally locked planets. Simulations, observations, and simple models show that if these planets are sufficiently rapidly rotating, their atmospheres have an eastward equatorial jet and a hot-spot east of the substellar point. We linearize the shallow-water model about this eastward flow and its associated geostrophic height perturbation. The forced solutions of this system show that the shear flow explains the form of the global circulation, particularly the hot-spot shift and the positions of the cold standing waves on the night-side. We suggest that the eastward hot-spot shift in observations and 3D simulations of these atmospheres is caused by the zonal flow Doppler-shifting the stationary wave response eastwards, summed with the geostrophic height perturbation from the flow itself. This differs from other studies which explained the hot-spot shift as pure advection of heat from air flowing eastward from the substellar point, or as equatorial waves travelling eastwards. We compare our solutions to simulations in our climate model Exo-FMS and show that they matched the position of the eastward-shifted hot-spot, and the global wind pattern. We discuss how planetary properties affect the global circulation, and how they change observables such as the hot-spot shift or day-night contrast. We conclude that the wave-mean flow interaction be tween the stationary planetary waves and the equatorial jet is a vital part of the equilibrium circulation on tidally locked planets.Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere
Icarus Elsevier 321 (2018) 550-563
Abstract:
Recent analysis of Gemini-North/NIFS H-band (1.45–1.8 µm) observations of Uranus, recorded in 2010, with recently updated line data has revealed the spectral signature of hydrogen sulphide (H2S) in Uranus’s atmosphere (Irwin et al., 2018). Here, we extend this analysis to Gemini-North/NIFS observations of Neptune recorded in 2009 and find a similar detection of H2S spectral absorption features in the 1.57–1.58 µm range, albeit slightly less evident, and retrieve a mole fraction of -1 - 3 ppm at the cloud tops. We find a much clearer detection (and much higher retrieved column abundance above the clouds) at southern polar latitudes compared with equatorial latitudes, which suggests a higher relative humidity of H2S here. We find our retrieved H2S abundances are most consistent with atmospheric models that have reduced methane abundance near Neptune’s south pole, consistent with HST/STIS determinations (Karkoschka and Tomasko, 2011). We also conducted a Principal Component Analysis (PCA) of the Neptune and Uranus data and found that in the 1.57–1.60 µm range, some of the Empirical Orthogonal Functions (EOFs) mapped closely to physically significant quantities, with one being strongly correlated with the modelled H2S signal and clearly mapping the spatial dependence of its spectral detectability. Just as for Uranus, the detection of H2S at the cloud tops constrains the deep bulk sulphur/nitrogen abundance to exceed unity (i.e. >4.4 -5.0 times the solar value) in Neptune’s bulk atmosphere, provided that ammonia is not sequestered at great depths, and places a lower limit on its mole fraction below the observed cloud of (0.4–1.3) x10 -5 . The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of the 2.5–3.5 bar cloud is likely to be H2S ice.Extreme-ultraviolet Radiation from A-stars: Implications for Ultra-hot Jupiters
The Astrophysical Journal Letters American Astronomical Society 868:2 (2018) l30
Constraining the period of the ringed secondary companion to the young star J1407 with photographic plates
Astronomy and Astrophysics EDP Sciences 619:November 2018 (2018) A157
Abstract:
Context. The 16 Myr old star 1SWASP J140747.93-394542.6 (V1400 Cen) underwent a series of complex eclipses in May 2007, interpreted as the transit of a giant Hill sphere filling debris ring system around a secondary companion, J1407b. No other eclipses have since been detected, although other measurements have constrained but not uniquely determined the orbital period of J1407b. Finding another eclipse towards J1407 will help determine the orbital period of the system, the geometry of the proposed ring system and enable planning of further observations to characterize the material within these putative rings.Aims. We carry out a search for other eclipses in photometric data of J1407 with the aim of constraining the orbital period of J1407b.
Methods. We present photometry from archival photographic plates from the Harvard DASCH survey, and Bamberg and Sonneberg Observatories, in order to place additional constraints on the orbital period of J1407b by searching for other dimming and eclipse events. Using a visual inspection of all 387 plates and a period-folding algorithm we performed a search for other eclipses in these data sets.
Results. We find no other deep eclipses in the data spanning from 1890 to 1990, nor in recent time-series photometry from 2012–2018.
Conclusions. We rule out a large fraction of putative orbital periods for J1407b from 5 to 20 yr. These limits are still marginally consistent with a large Hill sphere filling ring system surrounding a brown dwarf companion in a bound elliptical orbit about J1407. Issues with the stability of any rings combined with the lack of detection of another eclipse, suggests that J1407b may not be bound to J1407.