Transit signatures of inhomogeneous clouds on hot Jupiters: insights from microphysical cloud modeling

Astrophysical Journal American Astronomical Society 887:2 (2019) 170

Authors:

Diana Powell, Tom Louden, Laura Kreidberg, Xi Zhang, Peter Gao, Vivien Parmentier

Abstract:

We determine the observability in transmission of inhomogeneous cloud cover on the limbs of hot Jupiters through post-processing a general circulation model to include cloud distributions computed using a cloud microphysics model. We find that both the east and west limbs often form clouds, but that the different properties of these clouds enhance the limb-to-limb differences compared to the clear case. Using the James Webb Space Telescope, it should be possible to detect the presence of cloud inhomogeneities by comparing the shape of the transit light curve at multiple wavelengths because inhomogeneous clouds impart a characteristic, wavelength-dependent signature. This method is statistically robust even with limited wavelength coverage, uncertainty on limb-darkening coefficients, and imprecise transit times. We predict that the short-wavelength slope varies strongly with temperature. The hot limbs of the hottest planets form higher-altitude clouds composed of smaller particles, leading to a strong Rayleigh slope. The near-infrared spectral features of clouds are almost always detectable, even when no spectral slope is visible in the optical. In some of our models a spectral window between 5 and 9 μm can be used to probe through the clouds and detect chemical spectral features. Our cloud particle size distributions are not lognormal and differ from species to species. Using the area- or mass-weighted particle size significantly alters the relative strength of the cloud spectral features compared to using the predicted size distribution. Finally, the cloud content of a given planet is sensitive to a species' desorption energy and contact angle, two parameters that could be constrained experimentally in the future.

Towards the analysis of JWST exoplanet spectra: the effective temperature in the context of direct imaging

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 490:2 (2019) 2086-2090

Authors:

Jean-Loup Baudino, J Taylor, PGJ Irwin, R Garland

Abstract:

ABSTRACT The current sparse wavelength range coverage of exoplanet direct imaging observations, and the fact that models are defined using a finite wavelength range, lead both to uncertainties on effective temperature determination. We study these effects using blackbodies and atmospheric models and we detail how to infer this parameter. Through highlighting the key wavelength coverage that allows for a more accurate representation of the effective temperature, our analysis can be used to mitigate or manage extra uncertainties being added in the analysis from the models. We find that the wavelength range coverage will soon no longer be a problem. An effective temperature computed by integrating the spectroscopic observations of the James Webb Space Telescope will give uncertainties similar to, or better than, the current state–of–the–art, which is to fit models to data. Accurately calculating the effective temperature will help to improve current modelling approaches. Obtaining an independent and precise estimation of this crucial parameter will help the benchmarking process to identify the best practice to model exoplanet atmospheres.

The atmospheric circulation of ultra-hot Jupiters

Astrophysical Journal American Astronomical Society 886:1 (2019) 1-20

Authors:

Xianyu Tan, T Komacek

Constraints on Uranus's haze structure, formation and transport

Icarus Elsevier BV 333 (2019) 1-11

Authors:

Daniel Toledo, Patrick GJ Irwin, Pascal Rannou, Nicholas A Teanby, Amy A Simon, Michael H Wong, Glenn S Orton

Understanding the atmospheric properties and chemical composition of the ultra-hot Jupiter HAT-P-7b

Astronomy and Astrophysics EDP Sciences 631 (2019) A79

Authors:

C Helling, N Iro, L Corrales, D Samra, K Ohno, MK Alam, M Steinrueck, B Lew, K Molaverdikhani, RJ MacDonald, O Herbort, P Woitke, V Parmentier

Abstract:

Context. Of the presently known ≈3900 exoplanets, sparse spectral observations are available for ≈100. Ultra-hot Jupiters have recently attracted interest from observers and theoreticians alike, as they provide observationally accessible test cases. Confronting detailed theoretical models with observations is of preeminent importance in preparation for upcoming space-based telescopes.

Aims. We aim to study cloud formation on the ultra-hot Jupiter HAT-P-7b, the resulting composition of the local gas phase, and how their global changes affect wavelength-dependent observations utilised to derive fundamental properties of the planet.

Methods. We apply a hierarchical modelling approach as a virtual laboratory to study cloud formation and gas-phase chemistry. We utilise 97 vertical 1D profiles of a 3D GCM for HAT-P-7b to evaluate our kinetic cloud formation model consistently with the local equilibrium gas-phase composition. We use maps and slice views to provide a global understanding of the cloud and gas chemistry.

Results. The day/night temperature difference on HAT-P-7b (ΔT ≈ 2500 K) causes clouds to form on the nightside (dominated by H2/He) while the dayside (dominated by H/He) retains cloud-free equatorial regions. The cloud particles vary in composition and size throughout the vertical extension of the cloud, but also globally. TiO2[s]/Al2O3[s]/CaTiO3[s]-particles of cm-sized radii occur in the higher dayside-latitudes, resulting in a dayside dominated by gas-phase opacity. The opacity on the nightside, however, is dominated by 0.01…0.1μm particles made of a material mix dominated by silicates. The gas pressure at which the atmosphere becomes optically thick is ~10−4 bar in cloudy regions, and ~0.1 bar in cloud-free regions.

Conclusions. HAT-P-7b features strong morning/evening terminator asymmetries, providing an example of patchy clouds and azimuthally-inhomogeneous chemistry. Variable terminator properties may be accessible by ingress/egress transmission photometry (e.g., CHEOPS and PLATO) or spectroscopy. The large temperature differences of ≈2500 K result in an increasing geometrical extension from the night- to the dayside. The H2O abundance at the terminator changes by <1 dex with altitude and ≲0.3 dex (a factor of 2) across the terminator for a given pressure, indicating that H2O abundances derived from transmission spectra can be representative of the well-mixed metallicity at P ≳ 10 bar. We suggest the atmospheric C/O as an important tool to trace the presence and location of clouds in exoplanet atmospheres. The atmospheric C/O can be sub- and supersolar due to cloud formation. Phase curve variability of HAT-P-7b is unlikely to be caused by dayside clouds.