HARMONI - first light spectroscopy for the ELT: spectrograph camera lens mounts
Proceedings of SPIE - The International Society for Optical Engineering SPIE 11451 (2020)
Abstract:
HARMONI is the first light visible and near-infrared (NIR) integral field spectrograph for the Extremely Large Telescope(ELT). The HARMONI spectrograph will have four near-infrared cameras and two visible, both with seven lenses of various materials and diameters ranging from 286 to 152 mm. The lens mounts design has been optimized for each lens material to compensate for thermal stresses and maintain lens alignment at the operational temperature of 130 K. We discuss their design and mounting concept, as well as assembly and verification steps. We show initial results from two prototypes and outline improvements in the mounting procedures to reach tighter lens alignments. To conclude, we present a description of our future work to measure the decentering of the lenses when cooled down and settled.HARMONI: First light spectroscopy for the ELT: Final design and assembly plan of the spectrographs
Proceedings of SPIE - The International Society for Optical Engineering SPIE 11447 (2020)
Abstract:
HARMONI is the first light visible and near-IR integral field spectrograph for the ELT. It covers a large spectral range from 450nm to 2450nm with resolving powers from R (≡λ/Δλ) 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes - SCAO (including a High Contrast capability) and LTAO - or with NOAO. The project is preparing for Final Design Reviews. The instrument uses a field splitter and image slicer to divide the field into 4 sub-units, each providing an input slit to one of four nearly identical spectrographs. This proceeding presents the final opto-mechanical design and the AIV plan of the spectrograph units.Temporal Variability in Hot Jupiter Atmospheres
The Astrophysical Journal American Astronomical Society 888:1 (2020) 2
Clouds will likely prevent the detection of water vapor in JWST transmission spectra of terrestrial exoplanets
(2019)
Transit signatures of inhomogeneous clouds on hot Jupiters: insights from microphysical cloud modeling
Astrophysical Journal American Astronomical Society 887:2 (2019) 170