Spatial Variations in Titan's Atmospheric Temperature: ALMA and Cassini Comparisons from 2012 to 2015

(2018)

Authors:

AE Thelen, CA Nixon, NJ Chanover, EM Molter, MA Cordiner, RK Achterberg, J Serigano, PGJ Irwin, NA Teanby, SB Charnley

A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization

Publications of the Astronomical Society of the Pacific IOP Publishing 130 (2018) 114401

Authors:

Eliza M-R Kempton, Jacob L Bean, Dana R Louie, Drake Deming, Daniel DB Koll, Megan Mansfield, Jessie L Christiansen, Mercedes López-Morales, Mark R Swain, Robert T Zellem, Sarah Ballard, Thomas Barclay, Joanna K Barstow, Natasha E Batalha, Thomas G Beatty, Zach Berta-Thompson, Jayne Birkby, Lars A Buchhave, David Charbonneau, Nicolas B Cowan, Ian Crossfield, Miguel de Val-Borro, René Doyon, Diana Dragomir, Eric Gaidos, Kevin Heng, Renyu Hu, Stephen R Kane, Laura Kreidberg, Matthias Mallonn, Caroline V Morley, Norio Narita, Valerio Nascimbeni, Enric Pallé, Elisa V Quintana, Emily Rauscher, Sara Seager, Evgenya L Shkolnik, David K Sing, Alessandro Sozzetti, Keivan G Stassun, Jeff A Valenti, Carolina von Essen

Abstract:

A key legacy of the recently launched the Transiting Exoplanet Survey Satellite (TESS) mission will be to provide the astronomical community with many of the best transiting exoplanet targets for atmospheric characterization. However, time is of the essence to take full advantage of this opportunity. The James Webb Space Telescope (JWST), although delayed, will still complete its nominal five year mission on a timeline that motivates rapid identification, confirmation, and mass measurement of the top atmospheric characterization targets from TESS. Beyond JWST, future dedicated missions for atmospheric studies such as the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) require the discovery and confirmation of several hundred additional sub-Jovian size planets (R p < 10 R ⊕) orbiting bright stars, beyond those known today, to ensure a successful statistical census of exoplanet atmospheres. Ground-based extremely large telescopes (ELTs) will also contribute to surveying the atmospheres of the transiting planets discovered by TESS. Here we present a set of two straightforward analytic metrics, quantifying the expected signal-to-noise in transmission and thermal emission spectroscopy for a given planet, that will allow the top atmospheric characterization targets to be readily identified among the TESS planet candidates. Targets that meet our proposed threshold values for these metrics would be encouraged for rapid follow-up and confirmation via radial velocity mass measurements. Based on the catalog of simulated TESS detections by Sullivan et al., we determine appropriate cutoff values of the metrics, such that the TESS mission will ultimately yield a sample of ~300 high-quality atmospheric characterization targets across a range of planet size bins, extending down to Earth-size, potentially habitable worlds.

From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context

ASTRONOMY & ASTROPHYSICS 617 (2018) ARTN A110

Authors:

Vivien Parmentier, Mike R Line, Jacob L Bean, Megan Mansfield, Laura Kreidberg, Roxana Lupu, Channon Visscher, Jean-Michel Desert, Jonathan J Fortney, Magalie Deleuil, Jacob Arcangeli, Adam P Showman, Mark S Marley

Abstract:

Context. A new class of exoplanets has emerged: the ultra hot Jupiters, the hottest close-in gas giants. The majority of them have weaker-than-expected spectral features in the 1.1−1.7 µm bandpass probed by HST/WFC3 but stronger spectral features at longer wavelengths probed by Spitzer. This led previous authors to puzzling conclusions about the thermal structures and chemical abundances of these planets. Aims. We investigate how thermal dissociation, ionization, H − opacity, and clouds shape the thermal structures and spectral properties of ultra hot Jupiters. Methods. We use the SPARC/MITgcm to model the atmospheres of four ultra hot Jupiters and discuss more thoroughly the case of WASP-121b. We expand our findings to the whole population of ultra hot Jupiters through analytical quantification of the thermal dissociation and its influence on the strength of spectral features. Results. We predict that most molecules are thermally dissociated and alkalies are ionized in the dayside photospheres of ultra hot Jupiters. This includes H2O, TiO, VO, and H2 but not CO, which has a stronger molecular bond. The vertical molecular gradient created by the dissociation significantly weakens the spectral features from H2O while the 4.5 µm CO feature remains unchanged. The water band in the HST/WFC3 bandpass is further weakened by the continuous opacity of the H − ions. Molecules are expected to recombine before reaching the limb, leading to order of magnitude variations of the chemical composition and cloud coverage between the limb and the dayside. Conclusions. Molecular dissociation provides a qualitative understanding of the lack of strong spectral features of water in the 1−2 µm bandpass observed in most ultra hot Jupiters. Quantitatively, our model does not provide a satisfactory match to the WASP-121b emission spectrum. Together with WASP-33b and Kepler-33Ab, they seem the outliers among the population of ultra hot Jupiters, in need of a more thorough understanding

Near infrared throughput and stray light measurements of diffraction gratings for ELT-HARMONI

Proceedings of SPIE Society of Photo-optical Instrumentation Engineers 10706 (2018)

Authors:

M Rodrigues, John Capone, F Clarke, A Earle, T Foster, J Lynn, K Obrien, M Tecza, NA Thatte, I Tosh, A Hidalgo Valadez, IJ Lewis

Abundance measurements of Titan’s stratospheric HCN, HC3N, C3H4, and CH3CN from ALMA observations

Icarus Elsevier 319 (2018) 417-432

Authors:

AE Thelen, CA Nixon, NJ Chanover, MA Cordiner, EM Molter, NA Teanby, Patrick GJ Irwin, J Serigano, SB Charnley

Abstract:

Previous investigations have employed more than 100 close observations of Titan by the Cassini orbiter to elucidate connections between the production and distribution of Titan’s vast, organic-rich chemical inventory and its atmospheric dynamics. However, as Titan transitions into northern summer, the lack of incoming data from the Cassini orbiter presents a potential barrier to the continued study of seasonal changes in Titan’s atmosphere. In our previous work (Thelen et al., 2018), we demonstrated that the Atacama Large Millimeter/submillimeter Array (ALMA) is well suited for measurements of Titan’s atmosphere in the stratosphere and lower mesosphere ( km) through the use of spatially resolved (beam sizes  ≺ 1′′) flux calibration observations of Titan. Here, we derive vertical abundance profiles of four of Titan’s trace atmospheric species from the same 3 independent spatial regions across Titan’s disk during the same epoch (2012–2015): HCN, HC3N, C3H4, and CH3CN. We find that Titan’s minor constituents exhibit large latitudinal variations, with enhanced abundances at high latitudes compared to equatorial measurements; this includes CH3CN, which eluded previous detection by Cassini in the stratosphere, and thus spatially resolved abundance measurements were unattainable. Even over the short 3-year period, vertical profiles and integrated emission maps of these molecules allow us to observe temporal changes in Titan’s atmospheric circulation during northern spring. Our derived abundance profiles are comparable to contemporary measurements from Cassini infrared observations, and we find additional evidence for subsidence of enriched air onto Titan’s south pole during this time period. Continued observations of Titan with ALMA beyond the summer solstice will enable further study of how Titan’s atmospheric composition and dynamics respond to seasonal changes.