ORTIS - ORbiter terahertz infrared sounder
21st International Symposium on Space Terahertz Technology 2010, ISSTT 2010 (2010) 208
Abstract:
Accurate measurement of the temperature, composition and dynamics of Jupiter's atmosphere is one of the main scientific goals of ESA's and NASA's Outer Planet Mission proposals. Infrared remote sounding provides a powerful tool for achieving these objectives and was used by Voyager/IRIS and Cassini/CIRS, but is insensitive to some altitudes and gases. The sub-millimetre wavelength (terahertz) region of the electromagnetic spectrum, which has not been significantly exploited to date in the discipline of planetary science, provides unique spectral information over a range of atmospheric pressures and, when combined with infrared data, is a powerful in situ planetary atmospheric sounder. We will describe a novel low mass and low power consumption combined terahertz/IR instrument proposed for inclusion on the Jupiter Ganymede Orbiter that will greatly improve our understanding of the atmosphere of Jupiter. Through the combination of high spectral resolution 2.2THz spectroscopy (R=106) and lowspectral resolution IR radiometry, the entire temperature profile of the Jovian atmosphere from 0.6 to 10-3 bar can be evaluated (filling in the currently unmeasured levels between 0.1 and 0.01 bar). In addition, the tropospheric and stratospheric composition can be determined (especially water vapour) and observations of the Doppler shifting of sub-millimetre lines can also be used to measure horizontal wind speeds.Seasonal changes in Titan's polar trace gas abundance observed by cassini
Astrophysical Journal Letters 724:1 PART 2 (2010)
Abstract:
We use a six-year data set (2004-2010) of mid-infrared spectra measured by Cassini's Composite InfraRed Spectrometer to search for seasonal variations in Titan's atmospheric temperature and composition. During most of Cassini's mission Titan's northern hemisphere has been in winter, with an intense stratospheric polar vortex highly enriched in trace gases, and a single south-to-north circulation cell. Following northern spring equinox in mid-2009, dramatic changes in atmospheric temperature and composition were expected, but until now the temporal coverage of polar latitudes has been too sparse to discern trends. Here, we show that during equinox and post-equinox periods, abundances of trace gases at both poles have begun to increase.We propose that increases in north polar trace gases are due to a seasonal reduction in gas depletion by horizontal mixing across the vortex boundary. A simultaneous south polar abundance increase suggests that Titan is now entering, or is about to enter, a transitional circulation regime with two branches, rather than the single branch circulation pattern previously observed. © 2010. The American Astronomical Society. All rights reserved.The Importance of Ice Vertical Resolution for Snowball Climate and Deglaciation
Journal of Climate American Meteorological Society 23:22 (2010) 6100-6109
An image slicer-based integral-field spectrograph for EPICS
Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)
Abstract:
We present the results of a design study for an integral field spectrograph as the "back-end" instrument for spectroscopy of exoplanets carried out in the context of the EPICS Phase A study. EPICS is the planet finder imager and spectrograph for the E-ELT. In our study we investigated the feasibility of an image slicer based integral field spectrograph and developed an optical design for the image slicer and the necessary pre-optics, as well as the spectrograph optics. We present a detailed analysis of the optical performance of the design. © 2010 Copyright SPIE - The International Society for Optical Engineering.Coronagraphic capability for HARMONI at the E-ELT
Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)