Intense Star-formation and Feedback at High Redshift: Spatially-resolved Properties of the z=2.6 Submillimeter Galaxy SMMJ14011+0252
ArXiv astro-ph/0611769 (2006)
Abstract:
We present a detailed analysis of the spatially-resolved properties of the lensed submillimeter galaxy SMMJ14011+0252 at z=2.56, combining deep near-infrared integral-field data obtained with SPIFFI on the VLT with other multi-wavelength data sets. The broad characteristics of SMMJ14011+0252 are in agreement with what is expected for the early evolution of local massive spheroidal galaxies. From continuum and line flux, velocity, and dispersion maps, we measure the kinematics, star-formation rates, gas densities, and extinction for individual subcomponents. The star formation intensity is similar to low-redshift ``maximal starbursts'', while the line fluxes and the dynamics of the emission line gas provide direct evidence for a starburst-driven wind with physical properties very similar to local superwinds. We also find circumstantial evidence for "self-regulated" star formation within J1. The relative velocity of the bluer companion J2 yields a dynamical mass estimate for J1 within about 20 kpc, M_dyn \sim 1\times 10^{11} M_sun. The relative metallicity of J2 is 0.4 dex lower than in J1n/s, suggesting different star formation histories. SED fitting of the continuum peak J1c confirms and substantiates previous suggestions that this component is a z=0.25 interloper. When removing J1c, the stellar continuum and H-alpha line emission appear well aligned spatially in two individual components J1n and J1s, and coincide with two kinematically distinct regions in the velocity map, which might well indicate a merging system. This highlights the close similarity between SMGs and ULIRGs, which are often merger-driven maximal starbursts, and suggests that the intrinsic mechanisms of star-formation and related feedback are similar to low-redshift strongly star-forming systems.A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup
Geochemistry Geophysics Geosystems American Geophysical Union (AGU) 7:11 (2006)
Investigating plausible mechanisms to trigger a deglaciation from a hard snowball Earth
Comptes Rendus Géoscience Cellule MathDoc/Centre Mersenne 339:3-4 (2006) 274-287
Scattering properties and location of the jovian 5-micron absorber from Galileo/NIMS limb-darkening observations
Journal of Quantitative Spectroscopy and Radiative Transfer 101:3 (2006) 448-461
Abstract:
The upper jovian atmosphere is particularly transparent at wavelengths near 5 μ m. Levels well below the cloud layers, which are situated between 0.5 and 2 bar, can be sounded. Large spatial variations of the brightness are observed, which are directly related to the opacity of the overlying cloud layer. Yet, the nature of the 5- μ m absorber in the jovian atmosphere has been subject of much debate. The cloud layer has been modelled many times as a thin, non-scattering layer, the opacity adjusted to fit the overall radiance level. This has proven to work well for individual spectra. Data from the Galileo near infrared mapping spectrometer (NIMS), covering the 0.7- 5.2 μ m range, include a number of observations of the same areas, separated by several hours, at different emission angles. Should the 5 μ m absorber be a thin absorbing layer then, apart from a change in radiance level, the overall shape of the 5- μ m spectrum is also expected to change significantly with emission angle. However, comparison of the 5- μ m spectra measured by NIMS of the same location but at different viewing angles reveals that while the overall radiance level decreases with increasing emission angle, the shape of the spectra remain unchanged. In this paper we present atmospheric models that include scattering to explain this effect. We show that the 5- μ m absorbing cloud particles must be significantly scattering ( ω = 0.9 ± 0.05 ) in order to explain these observations, and find that the base of the cloud layer must reside at pressures less than 2 bar. Furthermore, we show that the scattering within this cloud has important consequences on the retrieval of gas abundances from spectra in the 5- μ m region. © 2006 Elsevier Ltd. All rights reserved.Modelling the primary control of paleogeography on Cretaceous climate
Earth and Planetary Science Letters Elsevier 248:1-2 (2006) 426-437