Cloud property trends in hot and ultra-hot giant gas planets (WASP-43b, WASP-103b, WASP-121b, HAT-P-7b, and WASP-18b)

Astronomy & Astrophysics EDP Sciences 649 (2021) a44

Authors:

Ch Helling, D Lewis, D Samra, L Carone, V Graham, O Herbort, KL Chubb, M Min, R Waters, V Parmentier, N Mayne

Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres: A comprehensive survey of transiting close-in gas giant exoplanets with warm-Spitzer/IRAC

ASTRONOMY & ASTROPHYSICS 648 (2021) ARTN A127

Authors:

Claire Baxter, Jean-Michel Desert, Shang-Min Tsai, Kamen O Todorov, Jacob L Bean, Drake Deming, Vivien Parmentier, Jonathan J Fortney, Michael Line, Daniel Thorngren, Raymond T Pierrehumbert, Adam Burrows, Adam P Showman

Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres: a comprehensive survey of transiting close-in gas giant exoplanets with warm-Spitzer/IRAC

Astronomy and Astrophysics EDP Sciences 648 (2021) A127

Authors:

Claire Baxter, Jean-Michel Desert, Shang-Min Tsai, Kamen O Todorov, Jacob L Bean, Drake Deming, Vivien Parmentier, Jonathan J Fortney, Michael Line, Daniel Thorngren, Raymond T Pierrehumbert, Adam Burrows, Adam P Showman

Abstract:

Aims: We present a large atmospheric study of 49 gas giant exoplanets using infrared transmission photometry with Spitzer/IRAC at 3.6 and 4.5 μm. Methods. We uniformly analyze 70 photometric light curves of 33 transiting planets using our custom pipeline, which implements pixel level decorrelation. Augmenting our sample with 16 previously published exoplanets leads to a total of 49. We use this survey to understand how infrared photometry traces changes in atmospheric chemical properties as a function of planetary temperature. We compare our measurements to a grid of 1D radiative-convective equilibrium forward atmospheric models which include disequilibrium chemistry. We explore various strengths of vertical mixing (Kzz = 0-1012 cm2 s-1) as well as two chemical compositions (1x and 30x solar).

Results: We find that, on average, Spitzer probes a difference of 0.5 atmospheric scale heights between 3.6 and 4.5 μm, which is measured at 7.5σ level of significance. Changes in the opacities in the two Spitzer bandpasses are expected with increasing temperature due to the transition from methane-dominated to carbon-monoxide-dominated atmospheres at chemical equilibrium. Comparing the data with our model grids, we find that the coolest planets show a lack of methane compared to expectations, which has also been reported by previous studies of individual objects. We show that the sample of coolest planets rule out 1x solar composition with >3σ confidence while supporting low vertical mixing (Kzz = 108 cm2 s-1). On the other hand, we find that the hot planets are best explained by models with 1x solar metallicity and high vertical mixing (Kzz = 1012 cm2 s-1). We interpret this as the lofting of CH4 to the upper atmospheric layers. Changing the interior temperature changes the expectation for equilibrium chemistry in deep layers, hence the expectation of disequilibrium chemistry higher up. We also find a significant scatter in the transmission signatures of the mid-Temperate and ultra-hot planets, likely due to increased atmospheric diversity, without the need to invoke higher metallicities. Additionally, we compare Spitzer transmission with emission in the same bandpasses for the same planets and find no evidence for any correlation. Although more advanced modelling would test our conclusions further, our simple generic model grid points towards different amounts of vertical mixing occurring across the temperature range of hot Jupiters. This finding also agrees with the observed scatter with increasing planetary magnitude seen in Spitzer/IRAC color-magnitude diagrams for planets and brown dwarfs.

TOI-1431b/MASCARA-5b: A Highly Irradiated Ultra-Hot Jupiter Orbiting One of the Hottest & Brightest Known Exoplanet Host Stars

(2021)

Authors:

Brett Christopher Addison, Emil Knudstrup, Ian Wong, Guillaume Hebrard, Patrick Dorval, Ignas Snellen, Simon Albrecht, Aaron Bello-Arufe, Jose-Manuel Almenara, Isabelle Boisse, Xavier Bonfils, Shweta Dalal, Olivier Demangeon, Sergio Hoyer, Flavien Kiefer, NC Santos, Grzegorz Nowak, Rafael Luque, Monika Stangret, Enric Palle, Rene Tronsgaard, Victoria Antoci, Lars A Buchhave, Maximilian N Gunther, Tansu Daylan, Felipe Murgas, Hannu Parviainen, Emma Esparza-Borges, Nicolas Crouzet, Norio Narita, Akihiko Fukui, Kiyoe Kawauchi, Noriharu Watanabe, Markus Rabus, Marshall C Johnson, Gilles PPL Otten, Geert Jan Talens, Samuel HC Cabot, Debra A Fischer, Frank Grundahl, Mads Fredslund Andersen, Jens Jessen-Hanse, Pere Palle, Avi Shporer, David R Ciardi, Jake T Clark, Robert A Wittenmyer, Duncan J Wright, Jonathan Horner, Karen A Collins, Eric LN Jensen, John F Kielkopf, Richard P Schwarz, Gregor Srdoc, Mesut Yilmaz, Hakan Volkan Senavci, Brendan Diamond, Daniel Harbeck, Thaddeus D Komacek, Jeffrey C Smith, Songhu Wang, Jason D Eastman, Keivan G Stassun, David W Latham, Roland Vanderspek, Sara Seager, Joshua N Winn, Jon M Jenkins, Dana R Louie, Luke G Bouma, Joseph D Twicken, Alan M Levine, Brian McLean

The vector-apodizing phase plate coronagraph: design, current performance, and future development

(2021)

Authors:

DS Doelman, F Snik, EH Por, SP Bos, GPPL Otten, M Kenworthy, SY Haffert, M Wilby, AJ Bohn, BJ Sutlieff, K Miller, M Ouellet, J de Boer, CU Keller, MJ Escuti, S Shi, NZ Warriner, KJ Hornburg, JL Birkby, J Males, KM Morzinski, LM Close, J Codona, J Long, L Schatz, J Lumbres, A Rodack, K Van Gorkom, A Hedglen, O Guyon, J Lozi, T Groff, J Chilcote, N Jovanovic, S Thibault, C de Jonge, G Allain, C Vallée, D Patel, O Côté, C Marois, P Hinz, J Stone, A Skemer, Z Briesemeister, A Boehle, AM Glauser, W Taylor, P Baudoz, E Huby, O Absil, B Carlomagno, C Delacroix