NEW PLEIADES ECLIPSING BINARIES AND A HYADES TRANSITING SYSTEM IDENTIFIED BY K2

ASTRONOMICAL JOURNAL 151:5 (2016) ARTN 112

Authors:

TJ David, KE Conroy, LA Hillenbrand, KG Stassun, J Stauffer, LM Rebull, AM Cody, H Isaacson, AW Howard, S Aigrain

Convection in condensible-rich atmospheres

Astrophysical Journal IOP Publishing 822:1 (2016) 24-24

Authors:

F Ding, Raymond Pierrehumbert

Abstract:

Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth's present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

K2SC: Flexible systematics correction and detrending of K2 light curves using Gaussian Process regression

(2016)

Authors:

Suzanne Aigrain, Hannu Parviainen, Benjamin Pope

THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA

The Astrophysical Journal American Astronomical Society 820:1 (2016) 78-78

Authors:

Michael R Line, Vivien Parmentier

The muscles treasury survey. I. Motivation and overview

Astrophysical Journal American Astronomical Society 820:2 (2016) 89

Authors:

K France, ROP Loyd, A Youngblood, A Brown, PC Schneider, SL Hawley, CS Froning, JL Linsky, A Roberge, AP Buccino, JRA Davenport, JM Fontenla, L Kaltenegger, AF Kowalski, PJD Mauas, Y Miguel, S Redfield, S Rugheimer, F Tian, MC Vieytes, LM Walkowicz, KL Weisenburger

Abstract:

Ground- and space-based planet searches employing radial velocity techniques and transit photometry have detected thousands of planet-hosting stars in the Milky Way. With so many planets discovered, the next step toward identifying potentially habitable planets is atmospheric characterization. While the Sun–Earth system provides a good framework for understanding the atmospheric chemistry of Earth-like planets around solar-type stars, the observational and theoretical constraints on the atmospheres of rocky planets in the habitable zones (HZs) around low-mass stars (K and M dwarfs) are relatively few. The chemistry of these atmospheres is controlled by the shape and absolute flux of the stellar spectral energy distribution (SED), however, flux distributions of relatively inactive low-mass stars are poorly understood at present. To address this issue, we have executed a panchromatic (X-ray to mid-IR) study of the SEDs of 11 nearby planet-hosting stars, the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) Treasury Survey. The MUSCLES program consists visible observations from Hubble and ground-based observatories. Infrared and astrophysically inaccessible wavelengths (EUV and Lyα) are reconstructed using stellar model spectra to fill in gaps in the observational data. In this overview and the companion papers describing the MUSCLES survey, we show that energetic radiation (X-ray and ultraviolet) is present from magnetically active stellar atmospheres at all times for stars as late as M6. The emission line luminosities of C iv and Mg ii are strongly correlated with band-integrated luminosities and we present empirical relations that can be used to estimate broadband FUV and XUV (≡X-ray + EUV) fluxes from individual stellar emission line measurements. We find that while the slope of the SED, FUV/NUV, increases by approximately two orders of magnitude form early K to late M dwarfs (≈0.01–1), the absolute FUV and XUV flux levels at their corresponding HZ distances are constant to within factors of a few, spanning the range 10–70 erg cm−2 s−1 in the HZ. Despite the lack of strong stellar activity indicators in their optical spectra, several of the M dwarfs in our sample show spectacular UV flare emission in their light curves. We present an example with flare/quiescent ultraviolet flux ratios of the order of 100:1 where the transition region energy output during the flare is comparable to the total quiescent luminosity of the star Eflare(UV) ~ 0.3 L*Δt (Δt = 1 s). Finally, we interpret enhanced L(line)/LBol ratios for C iv and N v as tentative observational evidence for the interaction of planets with large planetary mass-to-orbital distance ratios (Mplan/aplan) with the transition regions of their host stars.