Studying the dynamics of star forming and IR luminous galaxies with infrared spectroscopy

ESO ASTROPHY SYMP (2003) 74-84

Authors:

R Genzel, LJ Tacconi, M Barden, MD Lehnert, D Lutz, D Rigopoulou, N Thatte

Abstract:

With the advent of efficient near-IR spectrometers on 10m-class telescopes, exploiting the new generation of low readout noise, large format detectors, OH avoidance and sub-arcsecond seeing, 1-2.4mum spectroscopy can now be exploited for detailed galaxy dynamics and for studies of high-z galaxies. In the following we present the results of three recent IR spectroscopy studies on the dynamics of ULIRG mergers, on super star clusters in the Antennae, and on the properties of the rotation curves of zsimilar to1 disk galaxies, carried out with ISAAC on the VLT, and NIRSPEC on the Keck.

The frequency content of the VIRGO/SoHO light curves: Implications for planetary transit detection from space

SCIENTIFIC FRONTIERS IN RESEARCH ON EXTRASOLAR PLANETS 294 (2003) 441-444

Authors:

S Aigrain, G Gilmore, F Favata, S Carpano

Dynamical masses of young star clusters in interacting galaxies

Proceedings of SPIE - The International Society for Optical Engineering 4834 (2002) 45-56

Authors:

S Mengel, MD Lehnert, NA Thatte, R Genzel

Abstract:

Using ISAAC on VLT-ANTU and UVES on VLT-KUEYEN we have begun a program to measure stellar velocity dispersions of young star clusters in merging and interacting galaxies. In this contribution, we present results for clusters in two interacting galaxies - NGC 4038/39 and NGC 1487. Combining the measured velocity dispersions with sizes of the clusters estimated from Hubble Space Telescope imaging data resulted in the first determinations of dynamical masses of stellar clusters in galaxy mergers. Due to the faintness of the clusters and the high spectral resolution required, these results could only be obtained in with 10m class telescopes. Our results suggest that masses, sizes and concentrations of the light distributions are comparable to those of globular clusters, supporting the idea that part of the globular cluster population in elliptical galaxies is formed as a result of a merger event between to gas-rich spiral galaxies. However, the initial mass function (IMF) of the stars in the clusters seems to vary with environment: In some regions (dust-rich?), the IMF is more biased towards low-mass stars than in other (dust-poor) regions. There is a long-standing and substantial controversy in the literature whether or not their exists a "universal IMF". Our results for clusters in merging galaxies support the notion that the IMF depends on the birth environment of the cluster or perhaps some other variable. The relative content of low mass stars also influences the survival probability of stellar clusters. For their masses and light concentrations, some of the clusters have sufficiently shallow IMFs that it is likely that they will dissolve within a Hubble time, while for others, the IMF is sufficiently steep that they are likely to survive but undergo significant mass loss during their evolution.

The photospheric abundances of active binaries I Detailed analysis of HD 113816 (IS Vir) and HD 119285 (V851 Cen)

(2002)

Authors:

D Katz, F Favata, S Aigrain, G Micela

Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: from non-self-similar probability distribution functions to self-similar eigenmodes.

Physical review. E, Statistical, nonlinear, and soft matter physics 66:5 Pt 2 (2002) 056302

Authors:

Jai Sukhatme, Raymond T Pierrehumbert

Abstract:

We examine the decay of passive scalars with small, but nonzero, diffusivity in bounded two-dimensional (2D) domains. The velocity fields responsible for advection are smooth (i.e., they have bounded gradients) and of a single large scale. Moreover, the scale of the velocity field is taken to be similar to the size of the entire domain. The importance of the initial scale of variation of the scalar field with respect to that of the velocity field is strongly emphasized. If these scales are comparable and the velocity field is time periodic, we see the formation of a periodic scalar eigenmode. The eigenmode is numerically realized by means of a deterministic 2D map on a lattice. Analytical justification for the eigenmode is available from theorems in the dynamo literature. Weakening the notion of an eigenmode to mean statistical stationarity, we provide numerical evidence that the eigenmode solution also holds for aperiodic flows (represented by random maps). Turning to the evolution of an initially small scale scalar field, we demonstrate the transition from an evolving (i.e., non-self-similar) probability distribution function (pdf) to a stationary (self-similar) pdf as the scale of variation of the scalar field progresses from being small to being comparable to that of the velocity field (and of the domain). Furthermore, the non-self-similar regime itself consists of two stages. Both stages are examined and the coupling between diffusion and the distribution of the finite time Lyapunov exponents is shown to be responsible for the pdf evolution.