Dynamical Architecture of the HD 107148 Planetary System

The Astronomical Journal American Astronomical Society 163:5 (2022) 198

Authors:

Jan Eberhardt, Trifon Trifonov, Martin Kürster, Stephan Stock, Thomas Henning, Anna Wollbold, Sabine Reffert, Man Hoi Lee, Mathias Zechmeister, Florian Rodler, Olga Zakhozhay, Paul Heeren, Davide Gandolfi, Oscar Barragán, Marcelo Tala Pinto, Vera Wolthoff, Paula Sarkis, Stefan S Brems

On the viability of determining galaxy properties from observations I: Star formation rates and kinematics

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3906-3924

Authors:

Kearn Grisdale, Laurence Hogan, Dimitra Rigopoulou, Niranjan Thatte, Miguel Pereira-Santaella, Julien Devriendt, Adrianne Slyz, Ismael García-Bernete, Yohan Dubois, Sukyoung K Yi, Katarina Kraljic

Abstract:

We explore how observations relate to the physical properties of the emitting galaxies by post-processing a pair of merging z ∼ 2 galaxies from the cosmological, hydrodynamical simulation NEWHORIZON, using LCARS (Light from Cloudy Added to RAMSES) to encode the physical properties of the simulated galaxy into H α emission line. By carrying out mock observations and analysis on these data cubes, we ascertain which physical properties of the galaxy will be recoverable with the HARMONI spectrograph on the European Extremely Large Telescope (ELT). We are able to estimate the galaxy’s star formation rate and dynamical mass to a reasonable degree of accuracy, with values within a factor of 1.81 and 1.38 of the true value. The kinematic structure of the galaxy is also recovered in mock observations. Furthermore, we are able to recover radial profiles of the velocity dispersion and are therefore able to calculate how the dynamical ratio varies as a function of distance from the galaxy centre. Finally, we show that when calculated on galaxy scales the dynamical ratio does not always provide a reliable measure of a galaxy’s stability against gravity or act as an indicator of a minor merger.

Cloud-convection feedback in brown dwarf atmospheres

Astrophysical Journal American Astronomical Society 929:2 (2022) 153

Authors:

Maxence Lefevre, Xianyu Tan, Elspeth KH Lee, Rt Pierrehumbert

Abstract:

Numerous observational evidence has suggested the presence of active meteorology in the atmospheres of brown dwarfs. A near-infrared brightness variability has been observed. Clouds have a major role in shaping the thermal structure and spectral properties of these atmospheres. The mechanism of such variability is still unclear, and neither 1D nor global circulation models can fully study this topic due to resolution. In this study, a convective-resolving model is coupled to gray-band radiative transfer in order to study the coupling between the convective atmosphere and the variability of clouds over a large temperature range with a domain of several hundred kilometers. Six types of clouds are considered, with microphysics including settling. The clouds are radiatively active through the Rosseland mean coefficient. Radiative cloud feedback can drive spontaneous atmospheric variability in both temperature and cloud structure, as modeled for the first time in three dimensions. Silicate clouds have the most effect on the thermal structure with the generation of a secondary convective layer in some cases, depending on the assumed particle size. Iron and aluminum clouds also have a substantial impact on the atmosphere. Thermal spectra were computed, and we find the strongest effect of the clouds is the smoothing of spectral features at optical wavelengths. Compared to observed L and T dwarfs on the color–magnitude diagram, the simulated atmospheres are redder for most of the cases. Simulations with the presence of cloud holes are closer to observations.

Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:3 (2022) 3482-3492

Authors:

Alex Andersson, Rob Fender, Chris Lintott, David Williams, Laura Driessen, Patrick Woudt, Alexander van der Horst, David Buckley, Sara Motta, Lauren Rhodes, Nora Eisner, Rachel Osten, Paul Vreeswijk, Steven Bloemen, Paul Groot

Abstract:

We report on the detection of MKT J174641.0−321404, a new radio transient found in untargeted searches of wide-field MeerKAT radio images centred on the black hole X-ray binary H1743−322. MKT J174641.0−321404 is highly variable at 1.3 GHz and was detected three times during 11 observations of the field in late 2018, reaching a maximum flux density of 590 ± 60 μJy. We associate this radio transient with a high proper motion, M dwarf star SCR 1746−3214 12 pc away from the Sun. Multiwavelength observations of this M dwarf indicate flaring activity across the electromagnetic spectrum, consistent with emission expected from dMe stars, and providing upper limits on quiescent brightness in both the radio and X-ray regimes. TESS photometry reveals a rotational period for SCR 1746−3214 of 0.2292 ± 0.0025 days, which at its estimated radius makes the star a rapid rotator, comparable to other low mass systems. Dedicated spectroscopic follow up confirms the star as a mid-late spectral M dwarf with clear magnetic activity indicated by strong Hα emission. This transient’s serendipitous discovery by MeerKAT, along with multiwavelength characterisation, make it a prime demonstration of both the capabilities of the current generation of radio interferometers and the value of simultaneous observations by optical facilities such as MeerLICHT. Our results build upon the literature of of M dwarfs’ flaring behaviour, particularly relevant to the habitability of their planetary systems.

A Mini-Chemical Scheme with Net Reactions for 3D GCMs I.: Thermochemical Kinetics

ArXiv 2204.04201 (2022)

Authors:

Shang-Min Tsai, Elspeth KH Lee, Raymond Pierrehumbert