The hunt for habitable planets gets a new tool
Separating planetary reflex Doppler shifts from stellar variability in the wavelength domain
Abstract:
Stellar magnetic activity produces time-varying distortions in the photospheric line profiles of solar-type stars. These lead to systematic errors in high-precision radial-velocity measurements, which limit efforts to discover and measure the masses of low-mass exoplanets with orbital periods of more than a few tens of days. We present a new data-driven method for separating Doppler shifts of dynamical origin from apparent velocity variations arising from variability-induced changes in the stellar spectrum. We show that the autocorrelation function (ACF) of the cross-correlation function used to measure radial velocities is effectively invariant to translation. By projecting the radial velocities on to a subspace labelled by the observation identifiers and spanned by the amplitude coefficients of the ACF’s principal components, we can isolate and subtract velocity perturbations caused by stellar magnetic activity. We test the method on a 5-yr time sequence of 853 daily 15-min observations of the solar spectrum from the HARPS-N instrument and solar-telescope feed on the 3.58-m Telescopio Nazionale Galileo. After removal of the activity signals, the heliocentric solar velocity residuals are found to be Gaussian and nearly uncorrelated. We inject synthetic low-mass planet signals with amplitude K = 40 cm s−1 into the solar observations at a wide range of orbital periods. Projection into the orthogonal complement of the ACF subspace isolates these signals effectively from solar activity signals. Their semi-amplitudes are recovered with a precision of ∼ 6.6 cm s−1, opening the door to Doppler detection and characterization of terrestrial-mass planets around well-observed, bright main-sequence stars across a wide range of orbital periods.Characterizing atmospheres of transiting Earth-like exoplanets orbiting M Dwarfs with James Webb space telescope
Abstract:
A number of transiting, potentially habitable Earth-sized exoplanets have recently been detected around several nearby M dwarf stars. These worlds represent important targets for atmospheric characterization for the upcoming NASA James Webb Space Telescope (JWST). Given that available time for exoplanet characterization will be limited, it is critically important to first understand the capabilities and limitations of JWST when attempting to detect atmospheric constituents for potentially Earth-like worlds orbiting cool stars. Here, we explore coupled climate-chemistry atmospheric models for Earth-like planets orbiting a grid of M dwarf hosts. Using a newly-developed and validated JWST instrument model—the JWST Exoplanet Transit Simulator—we investigate the detectability of key biosignature and habitability indicator gaseous species for a variety of relevant instruments and observing modes. Spectrally resolved detection scenarios as well as cases where the spectral impact of a given species is integrated across the entire range of an instrument/mode are considered and serve to highlight the importance of considering information gained over an entire observable spectral range. Our results indicate that detectability of gases at individual wavelengths is overly challenging for JWST but integrating the spectral impact of a species across the entire wavelength range of an instrument/mode significantly improves requisite detection times. When considering the entire spectral coverage of an instrument/mode, detections of methane, carbon dioxide, oxygen and water at signal-to-noise ratio 5 could be achieved with observations of several tens of transits (or less) for cloud-free Earth-like worlds orbiting mid-to late-type M dwarfs at system distances of up to 10–15 pc. When compared to previous results, requisite exposure times for gas species detection depend on approaches to quantifying the spectral impact of the species as well as underlying photochemical model assumptions. Thus, constraints on atmospheric abundances, even if just upper limits, by JWST have the potential to further our understanding of terrestrial atmospheric chemistry.Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres: A comprehensive survey of transiting close-in gas giant exoplanets with warm-Spitzer/IRAC
Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres: a comprehensive survey of transiting close-in gas giant exoplanets with warm-Spitzer/IRAC
Abstract:
Aims: We present a large atmospheric study of 49 gas giant exoplanets using infrared transmission photometry with Spitzer/IRAC at 3.6 and 4.5 μm. Methods. We uniformly analyze 70 photometric light curves of 33 transiting planets using our custom pipeline, which implements pixel level decorrelation. Augmenting our sample with 16 previously published exoplanets leads to a total of 49. We use this survey to understand how infrared photometry traces changes in atmospheric chemical properties as a function of planetary temperature. We compare our measurements to a grid of 1D radiative-convective equilibrium forward atmospheric models which include disequilibrium chemistry. We explore various strengths of vertical mixing (Kzz = 0-1012 cm2 s-1) as well as two chemical compositions (1x and 30x solar).
Results: We find that, on average, Spitzer probes a difference of 0.5 atmospheric scale heights between 3.6 and 4.5 μm, which is measured at 7.5σ level of significance. Changes in the opacities in the two Spitzer bandpasses are expected with increasing temperature due to the transition from methane-dominated to carbon-monoxide-dominated atmospheres at chemical equilibrium. Comparing the data with our model grids, we find that the coolest planets show a lack of methane compared to expectations, which has also been reported by previous studies of individual objects. We show that the sample of coolest planets rule out 1x solar composition with >3σ confidence while supporting low vertical mixing (Kzz = 108 cm2 s-1). On the other hand, we find that the hot planets are best explained by models with 1x solar metallicity and high vertical mixing (Kzz = 1012 cm2 s-1). We interpret this as the lofting of CH4 to the upper atmospheric layers. Changing the interior temperature changes the expectation for equilibrium chemistry in deep layers, hence the expectation of disequilibrium chemistry higher up. We also find a significant scatter in the transmission signatures of the mid-Temperate and ultra-hot planets, likely due to increased atmospheric diversity, without the need to invoke higher metallicities. Additionally, we compare Spitzer transmission with emission in the same bandpasses for the same planets and find no evidence for any correlation. Although more advanced modelling would test our conclusions further, our simple generic model grid points towards different amounts of vertical mixing occurring across the temperature range of hot Jupiters. This finding also agrees with the observed scatter with increasing planetary magnitude seen in Spitzer/IRAC color-magnitude diagrams for planets and brown dwarfs.