The equatorial jet speed on tidally locked planets. I. Terrestrial planets
Astrophysical Journal American Astronomical Society 901:1 (2020) 78
Abstract:
The atmospheric circulation of tidally locked planets is dominated by a superrotating eastward equatorial jet. We develop a predictive theory for the formation of this jet, proposing a mechanism in which the three-dimensional stationary waves induced by the day–night forcing gradient produce an equatorial acceleration. This is balanced in equilibrium by an interaction between the resulting jet and the vertical motion of the atmosphere. The three-dimensional structure of the zonal acceleration is vital to this mechanism. We demonstrate this mechanism in a hierarchy of models. We calculate the three-dimensional stationary waves induced by the forcing on these planets and show the vertical structure of the zonal acceleration produced by these waves, which we use to suggest a mechanism for how the jet forms. General circulation model simulations are used to confirm the equilibrium state predicted by this mechanism, where the acceleration from these waves is balanced by an interaction between the zonal-mean vertical velocity and the jet. We derive a simple model of this using the "Weak Temperature Gradient" approximation, which gives an estimate of the jet speed on a terrestrial tidally locked planet. We conclude that the proposed mechanism is a good description of the formation of an equatorial jet on a terrestrial tidally locked planet and should be useful for interpreting observations and simulations of these planets. The mechanism requires assumptions such as a large equatorial Rossby radius and weak acceleration due to transient waves, and a different mechanism may produce the equatorial jets on gaseous tidally locked planets.Simulating gas kinematic studies of high-redshift galaxies with the HARMONI integral field spectrograph
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 498:2 (2020) 1891-1904
Erratum: The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 day orbit around a late F-star
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 497:1 (2020) 916-916
The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System
The American Astronomical Society. All rights reserved. The Astronomical Journal, Volume 160, Number 3
Abstract:
We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 sectors reveal three planets with radii ranging from 1 R⊕ to 2.6 R⊕ and orbital periods ranging from 9.98 to 37.43 days. Ground-based follow-up combined with diagnostic vetting and validation tests enables us to rule out common astrophysical false-positive scenarios and validate the system of planets. The outermost planet, TOI-700 d, has a radius of 1.19 ± 0.11 R⊕ and resides within a conservative estimate of the host star's habitable zone, where it receives a flux from its star that is approximately 86% of Earth's insolation. In contrast to some other low-mass stars that host Earth-sized planets in their habitable zones, TOI-700 exhibits low levels of stellar activity, presenting a valuable opportunity to study potentially rocky planets over a wide range of conditions affecting atmospheric escape. While atmospheric characterization of TOI-700 d with the James Webb Space Telescope (JWST) will be challenging, the larger sub-Neptune, TOI-700 c (R = 2.63 R⊕), will be an excellent target for JWST and future space-based observatories. TESS is scheduled to once again observe the Southern Hemisphere, and it will monitor TOI-700 for an additional 11 sectors in its extended mission. These observations should allow further constraints on the known planet parameters and searches for additional planets and transit timing variations in the system.
The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System
The Astronomical Journal American Astronomical Society 160:3 (2020) 116