Stellar surface information from the Ca II H&K lines -- II. Defining better activity proxies
(2024)
BOWIE-ALIGN: how formation and migration histories of giant planets impact atmospheric compositions
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 535:1 (2024) 171-186
A Gaussian process model for stellar activity in 2-D line profile time-series
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 535:1 (2024) stae2421
Abstract:
Stellar active regions like spots and faculae can distort the shapes of spectral lines, inducing variations in the radial velocities that are often orders of magnitude larger than the signals from Earth-like planets. Efforts to mitigate these activity signals have hitherto focused on either the time or the velocity (wavelength) domains. We present a physics-driven Gaussian process (GP) framework to model activity signals directly in time series of line profiles or cross-correlation functions (CCFs). Unlike existing methods that correct activity signals in line profile time series, our approach exploits the time correlation between velocity (wavelength) bins in the line profile variations, and is based on a simplified but physically motivated model for the origin of these variations. When tested on both synthetic and real data sets with signal-to-noise ratios down to ∼100, our method was able to separate the planetary signal from the activity signal, even when their periods were identical. We also conducted injection/recovery tests using two years of realistically sampled HARPS-N solar data, demonstrating the ability of the method to accurately recover a signal induced by a 1.5-Earth mass planet with a semi-amplitude of 0.3 m s-1 and a period of 33 d during high solar activity.BOWIE-ALIGN: A JWST comparative survey of aligned versus misaligned hot Jupiters to test the dependence of atmospheric composition on migration history
RAS Techniques and Instruments Oxford University Press 3:1 (2024) 691-704
Abstract:
A primary objective of exoplanet atmosphere characterization is to learn about planet formation and evolution, however, this is challenged by degeneracies. To determine whether differences in atmospheric composition can be reliably traced to differences in evolution, we are undertaking a transmission spectroscopy survey with JWST to compare the compositions of a sample of hot Jupiters that have different orbital alignments around F stars above the Kraft break. Under the assumption that aligned planets migrate through the inner disc, while misaligned planets migrate after disc dispersal, the act of migrating through the inner disc should cause a measurable difference in the C/O between aligned and misaligned planets. We expect the amplitude and sign of this difference to depend on the amount of planetesimal accretion and whether silicates accreted from the inner disc release their oxygen. Here, we identify all known exoplanets that are suitable for testing this hypothesis, describe our JWST survey, and use noise simulations and atmospheric retrievals to estimate our survey’s sensitivity. With the selected sample of four aligned and four misaligned hot Jupiters, we will be sensitive to the predicted differences in C/O between aligned and misaligned hot Jupiters for a wide range of model scenarios.JWST/NIRISS Reveals the Water-rich “Steam World” Atmosphere of GJ 9827 d
The Astrophysical Journal Letters American Astronomical Society 974:1 (2024) l10