No TiO detected in the hot Neptune-desert planet LTT-9779 b in reflected light at high spectral resolution

(2025)

Authors:

Sophia R Vaughan, Jayne L Birkby, Natasha E Batalha, Luke T Parker, Haochuan Yu, Julia V Seidel, Michael Radica, Jake Taylor, Laura Kreidberg, Vivien Parmentier, Sergio Hoyer, James S Jenkins, Annabella Meech, Ricardo Ramírez Reyes, Lennart van Sluijs

Chasing the storm: Investigating the application of high-contrast imaging techniques in producing precise exoplanet light curves

(2025)

Authors:

Ben J Sutlieff, David S Doelman, Jayne L Birkby, Matthew A Kenworthy, Jordan M Stone, Frans Snik, Steve Ertel, Beth A Biller, Charles E Woodward, Andrew J Skemer, Jarron M Leisenring, Alexander J Bohn, Luke T Parker

TDCOSMO. XXI. Accurate stellar velocity dispersions of the SL2S lens sample and the fundamental plane of the lensing mass

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

Pritom Mozumdar, Shawn Knabel, Tommaso Treu, Alessandro Sonnenfeld, Anowar J Shajib, Michele Cappellari, Carlo Nipoti

Abstract:

We reanalyzed spectra that were taken as part of the SL2S lens galaxy survey with the goal to obtain the stellar velocity dispersion with a precision and accuracy sufficient for time-delay cosmography. In order to achieve this goal, we imposed stringent cuts on the signal-to-noise ratio (S/N), and employed recently developed methods to mitigate and quantify residual systematic errors that are transferred from template libraries and fitting process. We also quantified the covariance across the sample. For galaxy spectra with S/N $>20/$Å, our new measurements have an average random uncertainty of 3-4%, an average systematic uncertainty of 2%, and a covariance across the sample of 1%. We find a negligible covariance between spectra taken with different instruments. The systematic uncertainty and covariance need to be included when the sample is used as an external dataset in time-delay cosmography. We revisited empirical scaling relations of lens galaxies based on the improved kinematics. We show that the SL2S sample, the TDCOSMO time-delay lens sample, and the lower-redshift SLACS sample follow the same correlation of the effective radius, stellar velocity dispersion, and lensing mass, known as the lensing-mass fundamental plane, as the previously derived correlation that assumed isothermal mass profiles for the deflectors. We also derived for the first time the lensing-mass fundamental plane assuming free power-law mass density profiles, and we show that the three samples also follow the same correlation. This is consistent with a scenario in which massive galaxies evolve by growing their radii and mass, but stay within the plane.

Shock-driven heating in the circumnuclear star-forming regions of NGC 7582: Insights from JWST NIRSpec and MIRI/MRS spectroscopy

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1887

Authors:

Oscar Veenema, Niranjan Thatte, Dimitra Rigopoulou, Ismael García-Bernete, Almudena Alonso-Herrero, Anelise Audibert, Enrica Bellocchi, Andrew J Bunker, Steph Campbell, Francoise Combes, Ric I Davies, Daniel Delaney, Fergus Donnan, Federico Esposito, Santiago García-Burillo, Omaira Gonzalez Martin, Laura Hermosa Muñoz, Erin KS Hicks, Sebastian F Hoenig, Nancy A Levenson, Chris Packham, Miguel Pereira-Santaella, Cristina Ramos Almeida, Claudio Ricci, Rogemar A Riffel, David Rosario, Lulu Zhang

Abstract:

Abstract We present combined JWST NIRSpec and MIRI/MRS integral field spectroscopy data of the nuclear and circumnuclear regions of the highly dust obscured Seyfert 2 galaxy NGC 7582, which is part of the sample of AGN in the Galaxy Activity, Torus and Outflow Survey (GATOS). Spatially resolved analysis of the pure rotational H2 lines (S(1)-S(7)) reveals a characteristic power-law temperature distribution in different apertures, with the two prominent southern star-forming regions exhibiting unexpectedly high molecular gas temperatures, comparable to those in the AGN powered nuclear region. We investigate potential heating mechanisms including direct AGN photoionisation, UV fluorescent excitation from young star clusters, and shock excitation. We find that shock heating gives the most plausible explanation, consistent with multiple near- and mid-IR tracers and diagnostics. Using photoionisation models from the PhotoDissociation Region Toolbox, we quantify the ISM conditions in the different regions, determining that the southern star-forming regions have a high density (nH ∼ 105 cm−3) and are irradiated by a moderate UV radiation field (G0 ∼ 103 Habing). Fitting a suite of Paris-Durham shock models to the rotational H2 lines, as well as rovibrational 1-0 S(1), 1-0 S(2), and 2-1 S(1) H2 emission lines, we find that a slow (vs ∼ 10 km/s) C-type shock is likely responsible for the elevated temperatures. Our analysis loosely favours local starburst activity as the driver of the shocks and circumnuclear gas dynamics in NGC 7582, though the possibility of an AGN jet contribution cannot be excluded.

MAGNUS I: A MUSE-DEEP sample of early-type galaxies at intermediate redshift

(2025)

Authors:

Pritom Mozumdar, Michele Cappellari, Christopher D Fassnacht, Tommaso Treu