WEAVE spectrograph cameras: the polishing of the spherical lenses
Abstract:
WEAVE is the new wide field multi-object and integral field survey facility for the prime focus of the 4.2 m William Herschel Telescope. WEAVE fiber-fed spectrograph offers two resolutions, R ~ 5000 and 20,000. The dual-beam spectrograph has two cameras: the blue one optimized for the wavelength interval of 366 - 606 nm and the red one for 579 - 959 nm. Each camera is formed by eight lenses, one aspherical and seven spherical. The lenses of the red camera are identical to the lenses of the blue camera only differentiated by the anti-reflection coating wavelength range. The diameter of the largest surface is 320 mm while of the smallest is 195 mm. INAOE, as a member of the collaboration is responsible of the manufacturing of the 14 spherical lenses and the collimator mirror. Here, we describe the main characteristics of WEAVE high precision cameras lenses, the manufacturing challenges giving the combination of OHARA® glasses properties, dimensions and specifications. We discuss the solutions developed to achieve the very demanding specifications.Opto-mechanical design of a High Contrast Module (HCM) for HARMONI
Low-level control software for the WEAVE spectrograph
Abstract:
WEAVE is a wide-field spectroscopy facility for WHT which includes a multi-object dual-beam spectrograph which will operate in the visible wavelength range. The blue beam will cover the range 360-600 nm and the red arm will cover the 580-960 nm range. In these ranges the spectrograph will offer a mid-resolution (~5000), while in three narrower wavelength intervals, two for the blue arm and one for the red one, the instrument will provide a high (~20000) spectrograph resolution. The spectrograph is currently entering the assembly and integration phase and the first light is foreseen in 2019. The entire WEAVE project is managed by an international consortium led by the University of Oxford. The spectrograph is controlled by a coordination process, the so called High-Level Server, which is part of the Observatory Control System (OCS) software suite, and is the single point of access to the embedded control system, the so called Low-Level Control Software, which is based on PAC technology.
This paper describes the design of the embedded software for the control of the spectrograph mechanisms. We first describe the interface between high and low level software, then we present the PAC architecture and discuss the low-level state machine. Finally, we provide details on the principal program routines and describe the engineering interface.