Low-mass eclipsing binaries in the WFCAM Transit Survey: the persistence of the M-dwarf radius inflation problem
Monthly Notices of the Royal Astronomical Society Oxford University Press 476:4 (2018) 5253-5267
Abstract:
We present the characterization of five new short-period low-mass eclipsing binaries (LMEBs) from the WFCAM Transit Survey. The analysis was performed by using the photometric WFCAM J-mag data and additional low- and intermediate-resolution spectroscopic data to obtain both orbital and physical properties of the studied sample. The light curves and the measured radial velocity curves were modelled simultaneously with the JKTEBOP code, with Markov chain Monte Carlo simulations for the error estimates. The best-model fit have revealed that the investigated detached binaries are in very close orbits, with orbital separations of 2.9 ≤ a ≤ 6.7 R⊙ and short periods of 0.59 ≤ Porb ≤ 1.72 d, approximately. We have derived stellar masses between 0.24 and 0.72 M⊙ and radii ranging from 0.42 to 0.67 R⊙. The great majority of the LMEBs in our sample has an estimated radius far from the predicted values according to evolutionary models. The components with derived masses of M < 0.6 M⊙ present a radius inflation of ∼9 per cent or more. This general behaviour follows the trend of inflation for partially radiative stars proposed previously. These systems add to the increasing sample of low-mass stellar radii that are not well-reproduced by stellar models. They further highlight the need to understand the magnetic activity and physical state of small stars. Missions like TESS will provide many such systems to perform high-precision radius measurements to tightly constrain low-mass stellar evolution models.SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties
Monthly Notices of the Royal Astronomical Society Oxford University Press 477:4 (2018) 4711-4737
Abstract:
We measure λRe, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ∈, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λRe; ∈) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λRe measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λRe . Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λRe; ∈) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λRe and ∈ < 0:4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above a stellar mass of 2 x 10^11 M⊙ where a significant number of high-mass fast rotators also exist.Models of gravitational lens candidates from Space Warps CFHTLS
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 474:3 (2018) 3700-3713
Donald Lynden-Bell (1935-2018)
Nature Nature Publishing Group 555:7695 (2018) 166
Abstract:
In 1969, Donald Lynden-Bell became the first astrophysicist to suggest that supermassive black holes in the cores of galaxies might generate the profuse energy put out by quasars — the astonishingly luminous distant bodies identified by astronomer Maarten Schmidt earlier that decade. Lynden-Bell proposed that quasars are powered by the release of gravitational energy as material falls into the deep potential well of the black hole, a process that is much more efficient than thermonuclear fusionLow-mass eclipsing binaries in the WFCAM Transit Survey: the persistence of the M-dwarf radius inflation problem
(2018)